IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5768-d812509.html
   My bibliography  Save this article

Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review

Author

Listed:
  • Jie Liu

    (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
    College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Yanjun Li

    (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
    College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Zhichao Lou

    (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
    College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Metal–organic frameworks (MOFs) and their derivatives have delivered perfect answers in detection, separation, solving water and electromagnetic pollution and improving catalysis and energy storage efficiency due to their advantages including their highly tunable porosity, structure and versatility. Recently, MOF/biomass, bio-MOFs and their derivatives have gradually become a shining star in the MOF family due to the improvement in the application performance of MOFs using biomass and biomolecules. However, current studies lack a systematic summary of the synthesis and advancements of MOF/biomass, bio-MOFs and their derivatives. In this review, we describe their research progress in detail from the following two aspects: (1) synthesis of MOF/biomass using biomass as a template to achieve good dispersion and connectivity at the same time; (2) preparing bio-MOFs by replacing traditional organic linkers with biomolecules to enhance the connection stability between metal ions/clusters and ligands and avoid the formation of toxic by-products. This enables MOFs to possess additional unique advantages, such as improved biocompatibility and mechanical strength, ideal reusability and stability and lower production costs. Most importantly, this is a further step towards green and sustainable development. Additionally, we showcase some typical application examples to show their great potential, including in the fields of environmental remediation, energy storage and electromagnetic wave absorption.

Suggested Citation

  • Jie Liu & Yanjun Li & Zhichao Lou, 2022. "Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5768-:d:812509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    2. Hee K. Chae & Diana Y. Siberio-Pérez & Jaheon Kim & YongBok Go & Mohamed Eddaoudi & Adam J. Matzger & Michael O'Keeffe & Omar M. Yaghi, 2004. "A route to high surface area, porosity and inclusion of large molecules in crystals," Nature, Nature, vol. 427(6974), pages 523-527, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Chong-Chen Wang & Yuh-Shan Ho, 2016. "Research trend of metal–organic frameworks: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 481-513, October.
    3. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    4. Zhi-Zhou Ma & Qiao-Hong Li & Zirui Wang & Zhi-Gang Gu & Jian Zhang, 2022. "Electrically regulating nonlinear optical limiting of metal-organic framework film," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Le Zeng & Tiexin Zhang & Renhai Liu & Wenming Tian & Kaifeng Wu & Jingyi Zhu & Zhonghe Wang & Cheng He & Jing Feng & Xiangyang Guo & Abdoulkader Ibro Douka & Chunying Duan, 2023. "Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    7. Kang Hun Kim & Moon Hyeon Kim, 2023. "Adsorption of CO 2 , CO, H 2 , and N 2 on Zeolites, Activated Carbons, and Metal-Organic Frameworks with Different Surface Nonuniformities," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    8. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    9. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    10. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    11. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    13. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2023. "Insulator-to-metal-like transition in thin films of a biological metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    17. Ryunosuke Hayashi & Shohei Tashiro & Masahiro Asakura & Shinya Mitsui & Mitsuhiko Shionoya, 2023. "Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Wenhe Xie & Yuan Ren & Fengluan Jiang & Xin-Yu Huang & Bingjie Yu & Jianhong Liu & Jichun Li & Keyu Chen & Yidong Zou & Bingwen Hu & Yonghui Deng, 2023. "Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    20. Mogwasha Dapheny Makhafola & Sheriff Aweda Balogun & Kwena Desmond Modibane, 2024. "A Comprehensive Review of Bimetallic Nanoparticle–Graphene Oxide and Bimetallic Nanoparticle–Metal–Organic Framework Nanocomposites as Photo-, Electro-, and Photoelectrocatalysts for Hydrogen Evolutio," Energies, MDPI, vol. 17(7), pages 1-46, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5768-:d:812509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.