IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4973-d545731.html
   My bibliography  Save this article

A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India

Author

Listed:
  • Gnana Swathika Odiyur Vathanam

    (School of Electrical Engineering, VIT Chennai, Chennai 600127, India)

  • Karthikeyan Kalyanasundaram

    (Larsen and Toubro Limited, Chennai 603111, India)

  • Rajvikram Madurai Elavarasan

    (Clean and Resilient Energy Systems (CARES) Laboratory, Texas A&M University, Galveston, TX 77553, USA)

  • Shabir Hussain Khahro

    (Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Umashankar Subramaniam

    (Department of Communications and Networks, Renewable Energy Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Rishi Pugazhendhi

    (Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Chennai 602117, India)

  • Mehana Ramesh

    (School of Electrical Engineering, VIT Chennai, Chennai 600127, India)

  • Rishi Murugesan Gopalakrishnan

    (School of Electrical Engineering, VIT Chennai, Chennai 600127, India)

Abstract

Lighting is a fundamental requirement of our daily life. A lot of research and development is carried out in the field of daylight harvesting, which is the need of the hour. One of the most desirable attributes of daylight harvesting is that daylight is available universally and it is a very clean and cost-efficient form of energy. By using the various methods of daylight harvesting, it is possible to attain the global Sustainable Development Goals. Daylight harvesting in the most fundamental sense is the lighting strategy control of the artificial light in an interior space where daylight is also present so that the required illumination level is achieved. This way, a lot of energy can be saved. Recently, in addition to energy efficiency, other factors such as cost-efficiency, user requirements such as uniform illuminance, and different levels of illuminance at different points are being considered. To simulate the actual daylight contribution for an office building in urban Chennai, India before construction, ECO TECH software is used by providing the inputs such as building orientation, and reflectance’s values of the ceiling, wall, and floor to analyze the overall percentage of daylight penetration available versus the percentage prescribed in the Indian Green Building Council to obtain the credit points. Thus, the impact of architectural design on daylight harvesting and daylight predictive technology has experimented with office building in Chennai, India. This article will give an insight into the current trends in daylight harvesting technology and intends to provide a deeper understanding and spark a research interest in this widely potential field.

Suggested Citation

  • Gnana Swathika Odiyur Vathanam & Karthikeyan Kalyanasundaram & Rajvikram Madurai Elavarasan & Shabir Hussain Khahro & Umashankar Subramaniam & Rishi Pugazhendhi & Mehana Ramesh & Rishi Murugesan Gopal, 2021. "A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India," Sustainability, MDPI, vol. 13(9), pages 1-32, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4973-:d:545731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Jamal, Taskin & Dyduch, Joanna & Arif, M.T. & Manoj Kumar, Nallapaneni & Shafiullah, GM & Chopra, Shauhrat S. & Nadarajah, Mithulananthan, 2021. "Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world," Applied Energy, Elsevier, vol. 292(C).
    2. Li, Xiujie & Wei, Yeyan & Zhang, Junbin & Jin, Peng, 2019. "Design and analysis of an active daylight harvesting system for building," Renewable Energy, Elsevier, vol. 139(C), pages 670-678.
    3. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    4. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    5. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    6. Zhang, Junbin & Yin, Zhuojun & Jin, Peng, 2019. "Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm," Energy, Elsevier, vol. 182(C), pages 585-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
    2. Elisabeta Spunei & Nătălița-Mihaela Frumușanu & Gheorghița Măran & Mihaela Martin, 2022. "Technical–Economic Analysis of the Solutions for the Modernization of Lighting Systems," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    3. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    4. Esteban A. Soto & Andrea Hernandez-Guzman & Alexander Vizcarrondo-Ortega & Amaya McNealey & Lisa B. Bosman, 2022. "Solar Energy Implementation for Health-Care Facilities in Developing and Underdeveloped Countries: Overview, Opportunities, and Challenges," Energies, MDPI, vol. 15(22), pages 1-17, November.
    5. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    6. Ružena Králiková & Laura Džuňová & Ervin Lumnitzer & Miriama Piňosová, 2022. "Simulation of Artificial Lighting Using Leading Software to Evaluate Lighting Conditions in the Absence of Daylight in a University Classroom," Sustainability, MDPI, vol. 14(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkatraman Indrajayanthan & Nalin Kant Mohanty & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2022. "Investigation on Current and Prospective Energy Transition Scenarios in Indian Landscape Using Integrated SWOT-MCDA Methodology," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    2. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    3. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Jamal, Taskin & Dyduch, Joanna & Arif, M.T. & Manoj Kumar, Nallapaneni & Shafiullah, GM & Chopra, Shauhrat S. & Nadarajah, Mithulananthan, 2021. "Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world," Applied Energy, Elsevier, vol. 292(C).
    4. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    7. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    8. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    9. Padmanathan Kasinathan & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Vigna Kumaran Ramachandaramurthy & Vinoth Ramanathan & Senthilkumar Subramanian & Sachin Kumar & Kamalakannan Nandhagopal & , 2022. "Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    10. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    11. Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    12. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    13. Olexandr Shavolkin & Iryna Shvedchykova & Michal Kolcun & Dušan Medved’, 2022. "Improvement of the Grid-Tied Solar-Wind System with a Storage Battery for the Self-Consumption of a Local Object," Energies, MDPI, vol. 15(14), pages 1-18, July.
    14. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    15. Muhammad Ibrahim & Rosli Mahmood, 2022. "Proactive Environmental Strategy and Environmental Performance of the Manufacturing SMEs of Karachi City in Pakistan: Role of Green Mindfulness as a DCV," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    16. Venkatraman Indrajayanthan & Nalin Kant Mohanty, 2022. "Assessment of Clean Energy Transition Potential in Major Power-Producing States of India Using Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 14(3), pages 1-27, January.
    17. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    18. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    19. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Campana, Pietro Elia & Khan, Irfan Ahmad, 2022. "A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe," Applied Energy, Elsevier, vol. 307(C).
    20. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4973-:d:545731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.