IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4757-d542116.html
   My bibliography  Save this article

Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil

Author

Listed:
  • Pollyanna Fernandes Bianchi

    (Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo 99052-900, Brazil)

  • Víctor Yepes

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain)

  • Paulo Cezar Vitorio

    (Department of Civil Construction, Federal Technological University of Paraná, Curitiba, Paraná 81280-340, Brazil)

  • Moacir Kripka

    (Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo 99052-900, Brazil)

Abstract

Despite insufficient housing facilities, particularly in developing countries, construction systems are generally selected intuitively or based on conventional solutions sanctioned by practice. The present study aims to evaluate different options for the design of low-income housing in Brazil by integrating the life cycle assessment (LCA) into the decision-making process. To achieve this objective, three single-family projects with different construction systems were selected and analyzed. The most sustainable design was selected through the analytic hierarchy process (AHP). The considered parameters, which were obtained through a survey with professionals and customers, included cost, environmental impact, thermal comfort, construction time, and cultural acceptance. LCA and life cycle cost assessment (LCCA) were performed with the frontier’s system considering the cradle-to-gate cycle, which included the extraction of raw materials, manufacture of building materials, and housing construction. The projects were modelled using Autodesk Revit software with the Tally application for LCA evaluation. The results indicated that light steel frame houses present a better behavior than other conventional alternatives, and the integration of building information modelling with LCA and LCCA in the design phase can lead to the development of more sustainable houses.

Suggested Citation

  • Pollyanna Fernandes Bianchi & Víctor Yepes & Paulo Cezar Vitorio & Moacir Kripka, 2021. "Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4757-:d:542116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
    2. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    3. Vicent Penadés-Plà & José V. Martí & Tatiana García-Segura & Víctor Yepes, 2017. "Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    4. Moacir Kripka & Victor Yepes & Cleovir José Milani, 2019. "Selection of Sustainable Short-Span Bridge Design in Brazil," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    5. Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
    6. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    7. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    8. Jozef Švajlenka & Mária Kozlovská & Terézia Pošiváková, 2018. "Analysis of Selected Building Constructions Used in Industrial Construction in Terms of Sustainability Benefits," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahong Dong & Peng Liu & Md. Uzzal Hossain, 2023. "Life Cycle Sustainability Assessment of Building Construction: A Case Study in China," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    2. Adetayo Onososen & Innocent Musonda & Motheo Meta Tjebane, 2022. "Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach," Sustainability, MDPI, vol. 14(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    2. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    4. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    6. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    7. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    8. Walzberg, Julien & Dandres, Thomas & Merveille, Nicolas & Cheriet, Mohamed & Samson, Réjean, 2019. "Assessing behavioural change with agent-based life cycle assessment: Application to smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 365-376.
    9. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.
    10. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    11. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    12. Vicent Penadés-Plà & David Martínez-Muñoz & Tatiana García-Segura & Ignacio J. Navarro & Víctor Yepes, 2020. "Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    13. Martínez-Rocamora, A. & Solís-Guzmán, J. & Marrero, M., 2016. "LCA databases focused on construction materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 565-573.
    14. Tajda Potrč Obrecht & Martin Röck & Endrit Hoxha & Alexander Passer, 2020. "BIM and LCA Integration: A Systematic Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    15. Robert Karaszewski & Paweł Modrzyński & Gözde Türkmen Müldür & Jacek Wójcik, 2021. "Blockchain Technology in Life Cycle Assessment—New Research Trends," Energies, MDPI, vol. 14(24), pages 1-13, December.
    16. Gabriela Kania & Klaudia Kwiecień & Mateusz Malinowski & Maciej Gliniak, 2021. "Analyses of the Life Cycles and Social Costs of CO 2 Emissions of Single-Family Residential Buildings: A Case Study in Poland," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    17. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    18. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    20. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4757-:d:542116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.