IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4298-d534880.html
   My bibliography  Save this article

Quantifying Environmental Burdens of Plasters Based on Natural vs. Flue Gas Desulfurization (FGD) Gypsum

Author

Listed:
  • Edyta Baran

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Sebastian Czernik

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Mariusz Hynowski

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Bartosz Michałowski

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Michał Piasecki

    (Building Research Institute, 1, Filtrowa St., 00-611 Warsaw, Poland)

  • Justyna Tomaszewska

    (Building Research Institute, 1, Filtrowa St., 00-611 Warsaw, Poland)

  • Jacek Michalak

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

Abstract

The ongoing global climate change and the associated environmental degradation pose a threat to Europe and the rest of the world. Raw materials and energy are required to produce building materials, which are used for construction purposes. Resulting buildings and structures generate waste during construction, operation, and demolition, and they emit potentially harmful substances. Thus, the key to achieving climate goals is to support low-emission materials and technologies in the construction sector, significantly impacting the environment. In the European Union, building materials are not yet subject to mandatory sustainability assessment during the assessment and verification of constancy of performance (AVCP). Objective evaluation of construction materials’ environmental impact requires it to be carried out based on production data on an industrial scale. This article presents the environmental impact of premixed gypsum-based plasters, commonly used in modern construction. Nine environmental indicators (global warming potential (GWP), depletion potential of the stratospheric ozone layer (ODP), acidification potential (AP), eutrophication potential (EP), formation potential of tropospheric ozone (POCP), abiotic depletion potential (ADP)-elements, ADP-fossil fuels, renewable primary energy resources (PERT), and nonrenewable primary energy resources (PERNT)) of premixed gypsum plasters based on natural and flue gas desulfurization (FGD) gypsum were estimated and discussed. Knowledge of the construction products’ environmental impact is fundamental for creating reliable databases. AVCP of construction materials in the future will use the data collected during the voluntary environmental impact evaluation.

Suggested Citation

  • Edyta Baran & Sebastian Czernik & Mariusz Hynowski & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2021. "Quantifying Environmental Burdens of Plasters Based on Natural vs. Flue Gas Desulfurization (FGD) Gypsum," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4298-:d:534880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    2. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    3. Bruno Menezes Galindro & Sebastian Welling & Niki Bey & Stig Irving Olsen & Sebastião Roberto Soares & Sven‐Olof Ryding, 2020. "Making use of life cycle assessment and environmental product declarations: A survey with practitioners," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 965-975, October.
    4. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    5. Christine Meschede, 2020. "The Sustainable Development Goals in Scientific Literature: A Bibliometric Overview at the Meta-Level," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    6. G. P. Peters & R. M. Andrew & J. G. Canadell & P. Friedlingstein & R. B. Jackson & J. I. Korsbakken & C. Quéré & A. Peregon, 2020. "Carbon dioxide emissions continue to grow amidst slowly emerging climate policies," Nature Climate Change, Nature, vol. 10(1), pages 3-6, January.
    7. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    2. Jacek Michalak, 2021. "External Thermal Insulation Composite Systems (ETICS) from Industry and Academia Perspective," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    3. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    4. Viktoria Mannheim & Weronika Kruszelnicka, 2022. "Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products," Energies, MDPI, vol. 15(10), pages 1-20, May.
    5. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    6. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    7. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    8. Azimi, Mohammad Naim, 2016. "An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan," MPRA Paper 69517, University Library of Munich, Germany, revised 11 Jan 2016.
    9. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    10. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    11. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    12. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    13. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    14. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    15. Soad Abokhamis Mousavi & Ercan Hoşkara & Kyle M. Woosnam, 2017. "Developing a Model for Sustainable Hotels in Northern Cyprus," Sustainability, MDPI, vol. 9(11), pages 1-23, November.
    16. McMillan, Colin A. & Moore, Michael R. & Keoleian, Gregory A. & Bulkley, Jonathan W., 2010. "Quantifying U.S. aluminum in-use stocks and their relationship with economic output," Ecological Economics, Elsevier, vol. 69(12), pages 2606-2613, October.
    17. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    19. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Muhammad Talha Siddique & Paraskevas Koukaras & Dimosthenis Ioannidis & Christos Tjortjis, 2023. "A Methodology Integrating the Quantitative Assessment of Energy Efficient Operation and Occupant Needs into the Smart Readiness Indicator," Energies, MDPI, vol. 16(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4298-:d:534880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.