IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3152-d516251.html
   My bibliography  Save this article

Info-Gap Models for Optimal Multi-Year Management of Regional Water Resources Systems under Uncertainty

Author

Listed:
  • Mashor Housh

    (Department of Natural Resources and Environmental Management, University of Haifa, Haifa 3498838, Israel)

  • Tomer Aharon

    (Department of Natural Resources and Environmental Management, University of Haifa, Haifa 3498838, Israel)

Abstract

The common practices for the planning and management of Water Resources Systems (WSSs) have been challenged in the last few decades by global climate change processes, which are observed around the world in increasing frequencies. Climate change is manifested by climate variability, temperature increase, and extreme events such as droughts and floods, which have a decisive effect on natural resource availability and in turn on water quality. Historical records may not be sufficient to reliably account for uncertain future predictions under climate change conditions. While such highly uncertain situations become the “normal” case worldwide, the traditional practices of probabilistic risk measures cannot be used to appropriately quantify the uncertain phenomena under non-stationarity conditions. To better account for uncertain future conditions, the objective of this study is to develop a water management model based on Info-Gap Decision Theory (IGDT) using optimization under deep uncertainty conditions. The Info-Gap theory is a framework that measures the confidence in the operational decisions by quantifying the robustness to uncertainty without accounting for any probabilistic data. To demonstrate the method as a tool to better guide the long-term sustainable operation of the water supply system under uncertain future conditions, we applied the Info-Gap model to the Sea of Galilee (SoG) regional WSS, which is a significant part of the Israeli National Water System (INWS). For Israel, which is, like other Middle East semi-arid regions, prone to dry conditions and limited water availability, there are well-founded concerns that prolonged periods of drought lie ahead, as a consequence of the global climate change processes. This study contributes a management tool for decision making under deep uncertainty to improve the decision-making process and better adapt to unpredictable uncertain future conditions. We demonstrate how the IGDT could be formulated and used to analyze WSSs under different settings and demonstrate how decisions could be derived from the IGDT formulation. We also show a sensitivity analysis for the obtained solutions.

Suggested Citation

  • Mashor Housh & Tomer Aharon, 2021. "Info-Gap Models for Optimal Multi-Year Management of Regional Water Resources Systems under Uncertainty," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3152-:d:516251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brett Korteling & Suraje Dessai & Zoran Kapelan, 2013. "Erratum to: Using Information-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1173-1174, March.
    2. Brett Korteling & Suraje Dessai & Zoran Kapelan, 2013. "Using Information-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1149-1172, March.
    3. Ben-Haim, Yakov & Demertzis, Maria, 2016. "Decision making in times of Knightian uncertainty: An info-gap perspective," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-30.
    4. Suvrajeet Sen & Julia L. Higle, 1999. "An Introductory Tutorial on Stochastic Linear Programming Models," Interfaces, INFORMS, vol. 29(2), pages 33-61, April.
    5. J W Chinneck & K Ramadan, 2000. "Linear programming with interval coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 209-220, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    2. Wei-Chih Lin & Yu-Pin Lin & Johnathen Anthony & Tsun-Su Ding, 2015. "Avian Conservation Areas as a Proxy for Contaminated Soil Remediation," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    3. N. Graveline & B. Aunay & J. Fusillier & J. Rinaudo, 2014. "Coping with Urban & Agriculture Water Demand Uncertainty in Water Management Plan Design: the Interest of Participatory Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3075-3093, August.
    4. A. Alvarado & M. Esteller & E. Quentin & J. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    5. Pongkijvorasin, Sittidaj & Burnett, Kimberly & Wada, Christopher, 2018. "Joint Management of an Interconnected Coastal Aquifer and Invasive Tree," Ecological Economics, Elsevier, vol. 146(C), pages 125-135.
    6. C. Dai & Y. Cai & Y. Liu & W. Wang & H. Guo, 2015. "A Generalized Interval Fuzzy Chance-Constrained Programming Method for Domestic Wastewater Management Under Uncertainty – A Case Study of Kunming, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3015-3036, July.
    7. A. Alvarado & M. V. Esteller & E. Quentin & J. L. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    8. Tom Roach & Zoran Kapelan & Ralph Ledbetter, 2018. "A Resilience-Based Methodology for Improved Water Resources Adaptation Planning under Deep Uncertainty with Real World Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2013-2031, April.
    9. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    10. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    11. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    12. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Strengthening ‘good’ modelling practices in robust decision support: A reporting guideline for combining multiple model-based methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 3-24.
    13. Tiku T. Tanyimboh & Anna M. Czajkowska, 2018. "Joint Entropy Based Multi-Objective Evolutionary Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2569-2584, June.
    14. Jean P. Palutikof & Roger B. Street & Edward P. Gardiner, 2019. "Decision support platforms for climate change adaptation: an overview and introduction," Climatic Change, Springer, vol. 153(4), pages 459-476, April.
    15. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    16. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. M Kumral, 2011. "Incorporating geo-metallurgical information into mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 60-68, January.
    18. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    19. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    20. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3152-:d:516251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.