IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2835-d511472.html
   My bibliography  Save this article

Waste to Wealth: Value Recovery from Bakery Wastes

Author

Listed:
  • Mugilan Govindaraju

    (Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Bukit Air Nasi, Jalan Bedong-Semeling, Bedong 08100, Kedah, Malaysia
    Fairy Food Industries Sdn Bhd, Plot 6491, Jalan Ayam Didik 2/2, Kawasan Perindustrian Ringan Taman Ria Jaya, Sungai Petani 08000, Kedah, Malaysia)

  • Kathiresan V. Sathasivam

    (Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Bukit Air Nasi, Jalan Bedong-Semeling, Bedong 08100, Kedah, Malaysia)

  • Kasi Marimuthu

    (Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Bukit Air Nasi, Jalan Bedong-Semeling, Bedong 08100, Kedah, Malaysia)

Abstract

Compost is considered a soil-amending product that can be used for soil improvement and to increase the productivity of organic vegetable crops. Composting can be an alternative solution for solid waste management. In this research, the efficacy of various bakery wastes and bulking agents, such as cow dung, to produce compost were studied. The bin composting method was applied in this research. Commercial effective microorganism was used to study its effectiveness in composting bakery waste compared to common ways of composting. Six compost trials were designed by using different ratios of feedstocks such as creamy and non-creamy bakery waste, paper boxes, eggshells, cow dung, dry leaves, and effective microorganism (EM). For the assessment of the maturity, stability, and quality of the compost, various physical and chemical parameters were routinely monitored, including temperature, pH, electrical conductivity (EC), moisture content, water holding capacity (WHC), phytotoxicity and color intensity of water extract, total organic carbon (TOC), total nitrogen (N), phosphorus (P), potassium (K), and C/N ratio. All six compost trials reached the four important phases of temperature, which are the mesophilic phase, thermophilic phase, second mesophilic phase (cooling phase), and maturation phase. The pH, EC, N, P, and K of every compost trial complied with standard compost requirements. Phytotoxicity study proved that all the compost trials were phytotoxic-free when tested with Phaseolus vulgaris (green bean). The water holding capacity of all six trials ranged from 2.18 to 4.30 g water/g dry material. Various compost trials achieved C/N ratios ranging from 12.01 to 14.48, which is considered within the satisfactory limit. The results showed that bakery waste can be turned into compost, with its quality complying with standard requirement.

Suggested Citation

  • Mugilan Govindaraju & Kathiresan V. Sathasivam & Kasi Marimuthu, 2021. "Waste to Wealth: Value Recovery from Bakery Wastes," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2835-:d:511472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nour El Houda Chaher & Mehrez Chakchouk & Nils Engler & Abdallah Nassour & Michael Nelles & Moktar Hamdi, 2020. "Optimization of Food Waste and Biochar In-Vessel Co-Composting," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    2. Modupe Stella Ayilara & Oluwaseyi Samuel Olanrewaju & Olubukola Oluranti Babalola & Olu Odeyemi, 2020. "Waste Management through Composting: Challenges and Potentials," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    3. Ma, Hongzhi & Wang, Qunhui & Qian, Dayi & Gong, Lijuan & Zhang, Wenyu, 2009. "The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage," Renewable Energy, Elsevier, vol. 34(6), pages 1466-1470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    2. Lefteris Melas & Maria Batsioula & Apostolos Malamakis & Sotiris I. Patsios & Dimitris Geroliolios & Evangelos Alexandropoulos & Stamatia Skoutida & Christos Karkanias & Anna Dedousi & Maria-Zoi Krits, 2023. "Circular Bioeconomy Practices in the Greek Pig Sector: The Environmental Performance of Bakery Meal as Pig Feed Ingredient," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    3. Apostolos Malamakis & Sotiris I. Patsios & Lefteris Melas & Anna Dedousi & Konstantinos N. Kontogiannopoulos & Konstantinos Vamvakas & Nikos Tsotsolas & Eleni Koutsouraki & Evangelia N. Sossidou & Geo, 2023. "Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm," Sustainability, MDPI, vol. 15(19), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    3. Sana Shahab & Mohd Anjum, 2022. "Solid Waste Management Scenario in India and Illegal Dump Detection Using Deep Learning: An AI Approach towards the Sustainable Waste Management," Sustainability, MDPI, vol. 14(23), pages 1-28, November.
    4. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    5. Muhammad Rifqi Ismiraj & Asri Wulansari & Yadi Setiadi & Aditia Pratama & Novi Mayasari, 2023. "Perceptions of Community-Based Waste Bank Operators and Customers on Its Establishment and Operationalization: Cases in Pangandaran, Indonesia," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    6. Maria Triassi & Bruna De Simone & Paolo Montuori & Immacolata Russo & Elvira De Rosa & Fabiana Di Duca & Claudio Crivaro & Vittorio Cerullo & Patrizia Pontillo & Sergi Díez, 2023. "Determination of Residual Municipal Solid Waste Composition from Rural and Urban Areas: A Step toward the Optimization of a Waste Management System for Efficient Material Recovery," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    7. Jan Sprafke & Vicky Shettigondahalli Ekanthalu & Michael Nelles, 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
    8. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    9. Nour El Houda Chaher & Safwat Hemidat & Qahtan Thabit & Mehrez Chakchouk & Abdallah Nassour & Moktar Hamdi & Michael Nelles, 2020. "Potential of Sustainable Concept for Handling Organic Waste in Tunisia," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    10. Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
    11. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    12. Fuad Ameen & Ali A. Al-Homaidan, 2020. "Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    13. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    14. Yuan Liu & Jiahui Liu & Hongyan Cheng & Yuan Luo & Kokyo Oh & Xiangzhuo Meng & Haibo Zhang & Na Liu & Mingchang Chang, 2022. "Seedling Establishment Test for the Comprehensive Evaluation of Compost Phytotoxicity," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    15. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    16. Hülya Sayğı, 2023. "Effect of Municipal Solid Waste Compost on Yield, Plant Growth and Nutrient Elements in Strawberry Cultivation," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    17. Vincenzo Torretta & Athanasia K. Tolkou & Ioannis A. Katsoyiannis & Francesca Maria Caccamo & Marco Carnevale Miino & Marco Baldi & Maria Cristina Collivignarelli, 2021. "Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue," Sustainability, MDPI, vol. 13(14), pages 1-11, July.
    18. Shaik Vaseem Akram & Rajesh Singh & Anita Gehlot & Mamoon Rashid & Ahmed Saeed AlGhamdi & Sultan S. Alshamrani & Deepak Prashar, 2021. "Role of Wireless Aided Technologies in the Solid Waste Management: A Comprehensive Review," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    19. Yukio Watanabe & Wataru Aoki & Mitsuyoshi Ueda, 2021. "Sustainable Biological Ammonia Production towards a Carbon-Free Society," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    20. Cenwei Liu & Yi Lin & Jing Ye & Gordon W. Price & Yixiang Wang, 2023. "Effect of Bamboo Vinegar on Control of Nitrogen Loss in Vegetable Waste and Manure Composting," Agriculture, MDPI, vol. 13(7), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2835-:d:511472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.