IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p542-d476862.html
   My bibliography  Save this article

Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers

Author

Listed:
  • Tarate Suryakant Bajirao

    (Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India)

  • Pravendra Kumar

    (Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India)

  • Manish Kumar

    (Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India)

  • Ahmed Elbeltagi

    (Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
    College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Alban Kuriqi

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

Estimating sediment flow rate from a drainage area plays an essential role in better watershed planning and management. In this study, the validity of simple and wavelet-coupled Artificial Intelligence (AI) models was analyzed for daily Suspended Sediment (SSC) estimation of highly dynamic Koyna River basin of India. Simple AI models such as the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were developed by supplying the original time series data as an input without pre-processing through a Wavelet (W) transform. The hybrid wavelet-coupled W-ANN and W-ANFIS models were developed by supplying the decomposed time series sub-signals using Discrete Wavelet Transform (DWT). In total, three mother wavelets, namely Haar, Daubechies, and Coiflets were employed to decompose original time series data into different multi-frequency sub-signals at an appropriate decomposition level. Quantitative and qualitative performance evaluation criteria were used to select the best model for daily SSC estimation. The reliability of the developed models was also assessed using uncertainty analysis. Finally, it was revealed that the data pre-processing using wavelet transform improves the model’s predictive efficiency and reliability significantly. In this study, it was observed that the performance of the Coiflet wavelet-coupled ANFIS model is superior to other models and can be applied for daily SSC estimation of the highly dynamic rivers. As per sensitivity analysis, previous one-day SSC (S t-1 ) is the most crucial input variable for daily SSC estimation of the Koyna River basin.

Suggested Citation

  • Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:542-:d:476862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melesse, A.M. & Ahmad, S. & McClain, M.E. & Wang, X. & Lim, Y.H., 2011. "Suspended sediment load prediction of river systems: An artificial neural network approach," Agricultural Water Management, Elsevier, vol. 98(5), pages 855-866, March.
    2. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    3. Onur Genç & Özgür Kişi & Mehmet Ardıçlıoğlu, 2014. "Determination of Mean Velocity and Discharge in Natural Streams Using Neuro-Fuzzy and Neural Network Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2387-2400, July.
    4. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    5. Dan Yin & Longcang Shu & Xunhong Chen & Zhenlong Wang & Mokhatar Mohammed, 2011. "Assessment of Sustainable Yield of Karst Water in Huaibei, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 287-300, January.
    6. Nariman Valizadeh & Ahmed El-Shafie, 2013. "Forecasting the Level of Reservoirs Using Multiple Input Fuzzification in ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3319-3331, July.
    7. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    8. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    9. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    10. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    11. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    12. Elnaz Sharghi & Vahid Nourani & Hessam Najafi & Amir Molajou, 2018. "Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3441-3456, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Mojgan & Etedali, Hadi Ramezani & Elbeltagi, Ahmed, 2021. "Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Priyanka Majumder & Arnab Paul & Pratik Saha & Mrinmoy Majumder & Dayarnab Baidya & Dhritiman Saha, 2023. "Trapezoidal fuzzy BWM-TOPSIS approach and application on water resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2648-2669, March.
    3. Elbeltagi, Ahmed & Azad, Nasrin & Arshad, Arfan & Mohammed, Safwan & Mokhtar, Ali & Pande, Chaitanya & Etedali, Hadi Ramezani & Bhat, Shakeel Ahmad & Islam, Abu Reza Md. Towfiqul & Deng, Jinsong, 2021. "Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
    2. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    3. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    4. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Muhammad Sultan & Fiaz Ahmad & Tahir Sultan & Zakir Hussain Dahri & Irfan Ali, 2019. "Input Selection of Wavelet-Coupled Neural Network Models for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 955-973, February.
    5. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    6. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    7. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    8. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    9. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    10. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    11. Yash Agrawal & Manoranjan Kumar & Supriya Ananthakrishnan & Gopalakrishnan Kumarapuram, 2022. "Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1025-1042, February.
    12. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    13. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    14. Luwang Chen & Xiaoxi Yin & Wenpin Xie & Xiaoqing Feng, 2014. "Calculating groundwater mixing ratios in groundwater-inrushing aquifers based on environmental stable isotopes (D, 18 O) and hydrogeochemistry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 937-953, March.
    15. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    16. Dong-Hyuk Kim & Ha-Yeong Kim & Ki-Hoon Moon & Jin-Hoon Jeong, 2022. "Prediction of Fracture Toughness of Intermediate Layer of Asphalt Pavements Using Artificial Neural Network," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
    17. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    18. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    19. Xing-Yun Zou & Xin-Yu Peng & Xin-Xin Zhao & Chun-Ping Chang, 2023. "The impact of extreme weather events on water quality: international evidence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 1-21, January.
    20. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:542-:d:476862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.