IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p14034-d706419.html
   My bibliography  Save this article

Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies

Author

Listed:
  • Hongmei Gu

    (Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA)

  • Shaobo Liang

    (Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA)

  • Francesca Pierobon

    (School of Environmental and Forest Science, University of Washington, Seattle, WA 98105, USA)

  • Maureen Puettmann

    (CORRIM—The Consortium for Research on Renewable Industrial Materials, Corvallis, OR 97339, USA)

  • Indroneil Ganguly

    (School of Environmental and Forest Science, University of Washington, Seattle, WA 98105, USA)

  • Cindy Chen

    (Population Research Center, Portland State University, Portland, OR 97207, USA)

  • Rachel Pasternack

    (The Nature Conservancy, Arlington, VA 22203, USA)

  • Mark Wishnie

    (BTG Pactual Timberland Investment Group, LLC, Seattle, WA 98199, USA)

  • Susan Jones

    (atelierjones, Seattle, WA 98101, USA)

  • Ian Maples

    (atelierjones, Seattle, WA 98101, USA)

Abstract

The building industry currently consumes over a third of energy produced and emits 39% of greenhouse gases globally produced by human activities. The manufacturing of building materials and the construction of buildings make up 11% of those emissions within the sector. Whole-building life-cycle assessment is a holistic and scientific tool to assess multiple environmental impacts with internationally accepted inventory databases. A comparison of the building life-cycle assessment results would help to select materials and designs to reduce total environmental impacts at the early planning stage for architects and developers, and to revise the building code to improve environmental performance. The Nature Conservancy convened a group of researchers and policymakers from governments and non-profit organizations with expertise across wood product life-cycle assessment, forest carbon, and forest products market analysis to address emissions and energy consumption associated with mass timber building solutions. The study disclosed a series of detailed, comparative life-cycle assessments of pairs of buildings using both mass timber and conventional materials. The methodologies used in this study are clearly laid out in this paper for transparency and accountability. A plethora of data exists on the favorable environmental performance of wood as a building material and energy source, and many opportunities appear for research to improve on current practices.

Suggested Citation

  • Hongmei Gu & Shaobo Liang & Francesca Pierobon & Maureen Puettmann & Indroneil Ganguly & Cindy Chen & Rachel Pasternack & Mark Wishnie & Susan Jones & Ian Maples, 2021. "Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14034-:d:706419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/14034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/14034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galina Churkina & Alan Organschi & Christopher P. O. Reyer & Andrew Ruff & Kira Vinke & Zhu Liu & Barbara K. Reck & T. E. Graedel & Hans Joachim Schellnhuber, 2020. "Buildings as a global carbon sink," Nature Sustainability, Nature, vol. 3(4), pages 269-276, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayşe Bayazıt Subaşı & Elçin Filiz Taş, 2023. "Single Score Environmental Performances of Roof Coverings," Sustainability, MDPI, vol. 15(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cindy X. Chen & Francesca Pierobon & Susan Jones & Ian Maples & Yingchun Gong & Indroneil Ganguly, 2021. "Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    2. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Sinha, Shreya & Narain, Nivedita & Bhanjdeo, Arundhita, 2022. "Building back better? Resilience as wellbeing for rural migrant households in Bihar, India," World Development, Elsevier, vol. 159(C).
    4. Creutzburg, Leonard & Lieberherr, Eva, 2021. "To log or not to log? Actor preferences and networks in Swiss forest policy," Forest Policy and Economics, Elsevier, vol. 125(C).
    5. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    6. Haeler, Elena & Bolte, Andreas & Buchacher, Rafael & Hänninen, Harri & Jandl, Robert & Juutinen, Artti & Kuhlmey, Katharina & Kurttila, Mikko & Lidestav, Gun & Mäkipää, Raisa & Rosenkranz, Lydia & Tri, 2023. "Forest subsidy distribution in five European countries," Forest Policy and Economics, Elsevier, vol. 146(C).
    7. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Azhgaliyeva, Dina & Rahut, Dil, 2022. "Promoting Green Buildings: Barriers, Solutions, and Policies," ADBI Working Papers 1331, Asian Development Bank Institute.
    10. Sebastian Wolf & Eugénie Paul-Limoges, 2023. "Drought and heat reduce forest carbon uptake," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    11. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
    12. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    15. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    16. Wu, Junnian & Li, Xue & Jin, Rong, 2022. "The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism: Coal chemical case study," Energy, Elsevier, vol. 261(PB).
    17. Yang, Yang & Chen, Sarula & Zhang, Jiqiang, 2023. "A comprehensive study on transient thermal behaviors and performances of the modular pipe-embedded energy wall system under intermittent operation conditions," Energy, Elsevier, vol. 280(C).
    18. Tenbensel, Tim & Cumming, Jacqueline & Willing, Esther, 2023. "The 2022 restructure of Aotearoa New Zealand's health system: Will it succeed in advancing equity where others have failed?," Health Policy, Elsevier, vol. 134(C).
    19. Olga Beatrice Carcassi & Pietro Minotti & Guillaume Habert & Ingrid Paoletti & Sophie Claude & Francesco Pittau, 2022. "Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation," Sustainability, MDPI, vol. 14(3), pages 1-23, January.
    20. Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14034-:d:706419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.