IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13634-d698985.html
   My bibliography  Save this article

A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan

Author

Listed:
  • Dadang Hartabela

    (Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
    Department of Architecture, University of Bandar Lampung, Bandar Lampung 35142, Indonesia)

  • Bart Julien Dewancker

    (Department of Architecture, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Mochamad Donny Koerniawan

    (Department of Architecture, Bandung Institute of Technology, School of Architecture, Planning and Policy Development, Bandung 40132, Indonesia)

Abstract

Outdoor thermal comfort is an important indicator to create a quality and livable environment. This study examines a relationship between micro-meteorological and personal variables of outdoor thermal comfort conditions in an urban park. The data collection of outdoor thermal comfort is carried out using two methods in combination: micro-meteorological measurement and questionnaire survey. This finding shows that most of the respondents were comfortable with the thermal, wind, and humidity condition. The acceptability and satisfaction level of thermal comfort were positive. The most significant micro-meteorological variable for the physiologically equivalent temperature (PET) value is mean radiant temperature (Tmrt). As the Tmrt value is influenced by how much shading is produced from the presence of vegetation or buildings around the measurement location, this finding shows that the shadow was very important to the thermal comfort conditions in the Green Park Kitakyushu. The most influential micro-meteorological variable for the three different personal variables (TSV, WFSV, and HSV) is air temperature. The strongest relationship among the four variables is between TSV and PET. The findings will be the basis for the city authorities in preparing regional development plans, especially those related to the planning of city parks or tourist attractions.

Suggested Citation

  • Dadang Hartabela & Bart Julien Dewancker & Mochamad Donny Koerniawan, 2021. "A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan," Sustainability, MDPI, vol. 13(24), pages 1-27, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13634-:d:698985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    2. Lin, Tzu-Ping & Matzarakis, Andreas, 2011. "Tourism climate information based on human thermal perception in Taiwan and Eastern China," Tourism Management, Elsevier, vol. 32(3), pages 492-500.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    2. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    4. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    5. Schneider, Philipp & Walz, Ariane & Albert, Christian & Lipp, Torsten, 2021. "Ecosystem-based adaptation in cities: Use of formal and informal planning instruments," Land Use Policy, Elsevier, vol. 109(C).
    6. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    7. Rosselló-Nadal, Jaume, 2014. "How to evaluate the effects of climate change on tourism," Tourism Management, Elsevier, vol. 42(C), pages 334-340.
    8. Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
    9. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    10. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).
    11. Xing Shi & Binghui Si & Jiangshan Zhao & Zhichao Tian & Chao Wang & Xing Jin & Xin Zhou, 2019. "Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    12. Suk-jin Jung & Seong-hwan Yoon, 2018. "Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices," Energies, MDPI, vol. 11(7), pages 1-19, July.
    13. Fernández, Ignacio C., 2019. "A multiple-class distance-decaying approach for mapping temperature reduction ecosystem services provided by urban vegetation in Santiago de Chile," Ecological Economics, Elsevier, vol. 161(C), pages 193-201.
    14. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    15. Junying Li & Jiying Liu & Jelena Srebric & Yuanman Hu & Miao Liu & Lei Su & Shunchang Wang, 2019. "The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    16. Hassan Saeed Khan & Muhammad Asif, 2017. "Impact of Green Roof and Orientation on the Energy Performance of Buildings: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    17. Cláudia Reis & António Lopes, 2019. "Evaluating the Cooling Potential of Urban Green Spaces to Tackle Urban Climate Change in Lisbon," Sustainability, MDPI, vol. 11(9), pages 1-17, April.
    18. Yaping Chen & Bohong Zheng & Yinze Hu, 2020. "Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    19. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    20. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13634-:d:698985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.