IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11025-d650101.html
   My bibliography  Save this article

Life Cycle Assessment of Disposed and Recycled End-of-Life Photovoltaic Panels in Australia

Author

Listed:
  • Jasleen Kaur Daljit Singh

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia)

  • Georgina Molinari

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia)

  • Jonathan Bui

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia)

  • Behdad Soltani

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
    Mercularis Pty. Ltd., Sydney, NSW 2145, Australia)

  • Gobinath Pillai Rajarathnam

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
    Mercularis Pty. Ltd., Sydney, NSW 2145, Australia)

  • Ali Abbas

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia)

Abstract

This study presents a life cycle assessment (LCA) of end-of-life (EoL) photovoltaic (PV) systems in Australia. Three different EoL scenarios are considered for 1 kWh of electricity generation across a 30-year PV system lifespan: (i) disposal to landfill, (ii) recycling by laminated glass recycling facility (LGRF), and (iii) recycling by full recovery of EoL photovoltaics (FRELP). It is found that recycling technologies reduce the overall impact score of the cradle-to-grave PV systems from 0.00706 to 0.00657 (for LGRF) and 0.00523 (for FRELP), as measured using the LCA ReCiPe endpoint single score. The CO 2 emissions to air decrease slightly from 0.059 kg CO 2 per kWh (landfill) to 0.054 kg CO 2 per kWh (for LGRF) and 0.046 kg CO 2 per kWh (for FRELP). Increasing the PV system lifespan from 30 years to 50 and 100 years (a hypothetical scenario) improves the ReCiPe endpoint single-score impact from 0.00706 to 0.00424 and 0.00212, respectively, with corresponding CO 2 emissions reductions from 0.059 kg CO 2 per kWh to 0.035 and 0.018 kg CO 2 per kWh, respectively. These results show that employing recycling slightly reduces the environmental impact of the EoL PV systems. It is, however, noted that recycling scenarios do not consider the recycling plant construction step due to a lack of data on these emerging PV panel recycling plants. Accounting for the latter will increase the environmental impact of the recycling scenarios, possibly defeating the purpose of recycling. Increasing the lifespan of the PV systems increases the longevity of the use of panel materials and is therefore favorable towards reducing environmental impacts. Our findings strongly suggest that PV recycling steps and technologies be carefully considered before implementation. More significantly, it is imperative to consider the circular design step up front, where PV systems are designed via circular economy principles such as utility and longevity and are rolled out through circular business models.

Suggested Citation

  • Jasleen Kaur Daljit Singh & Georgina Molinari & Jonathan Bui & Behdad Soltani & Gobinath Pillai Rajarathnam & Ali Abbas, 2021. "Life Cycle Assessment of Disposed and Recycled End-of-Life Photovoltaic Panels in Australia," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11025-:d:650101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dwivedy, Maheshwar & Suchde, Pratik & Mittal, R.K., 2015. "Modeling and assessment of e-waste take-back strategies in India," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 11-18.
    2. Marcus Linder & Steven Sarasini & Patricia Loon, 2017. "A Metric for Quantifying Product-Level Circularity," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 545-558, June.
    3. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    4. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    5. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    2. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    4. Laura Bonacorsi, 2020. "Measuring circularity: a critical analysis of some relevant indicators," Reports, Fondazione Eni Enrico Mattei, December.
    5. L. Rocchi & L. Paolotti & C. Cortina & F. F. Fagioli & A. Boggia, 2021. "Measuring circularity: an application of modified Material Circularity Indicator to agricultural systems," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-13, December.
    6. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    7. Jeff Mangers & Meysam Minoufekr & Peter Plapper & Sri Kolla, 2021. "An Innovative Strategy Allowing a Holistic System Change towards Circular Economy within Supply-Chains," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    9. Agamuthu, P. & Kasapo, Pearson & Mohd Nordin, Nurul Ain, 2015. "E-waste flow among selected institutions of higher learning using material flow analysis model," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 177-185.
    10. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    11. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    12. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    13. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    14. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    15. Nancy Bocken & Lars Strupeit & Katherine Whalen & Julia Nußholz, 2019. "A Review and Evaluation of Circular Business Model Innovation Tools," Sustainability, MDPI, vol. 11(8), pages 1-25, April.
    16. Andrea Cecchin & Roberta Salomone & Pauline Deutz & Andrea Raggi & Laura Cutaia, 2021. "What Is in a Name? The Rising Star of the Circular Economy as a Resource-Related Concept for Sustainable Development," Circular Economy and Sustainability,, Springer.
    17. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    18. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    19. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    20. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11025-:d:650101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.