IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10421-d638576.html
   My bibliography  Save this article

Using WaTEM/SEDEM to Configure Catchment Soil Conservation Measures for the Black Soil Region, Northeastern China

Author

Listed:
  • Haiyan Fang

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In recent years, to combat soil erosion, large-scale soil conservation measures have been implemented in the world. Evaluation of the integrated catchment management is urgently required. In the present study, soil erosion and sediment yield under 24 scenarios were predicted, based on the water and tillage erosion model and sediment delivery deposition model (WaTEM/SEDEM). The current catchment management was not ideal, with a catchment soil loss rate (SLR) of 599.88 t km −2 yr −1 and a sediment yield of 240.00 t km −2 yr −1 . The catchment management with contour tillage on <3° slopes, hedgerow planting on 3–5° slopes, terracing on 5–8° slopes, and forestation on >8° slopes with trenches along the forest and dams in gullies was the best catchment management to control soil loss, with catchment SLR that was less than the tolerable value of 200 t km −2 yr −1 . However, the SLR on the <3° slopes was still higher than the tolerable value. It is not enough to control soil loss by only implementing contour tillage measure on <3° slopes, and other measures should be further implemented on these slopes. In gullies, more measures should be implemented to prevent sediment flowing out of the catchments, in Northeastern China.

Suggested Citation

  • Haiyan Fang, 2021. "Using WaTEM/SEDEM to Configure Catchment Soil Conservation Measures for the Black Soil Region, Northeastern China," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10421-:d:638576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janeau, J.-L. & Gillard, L.-C. & Grellier, S. & Jouquet, P. & Le, Thi Phuong Quynh & Luu, Thi Nguyet Minh & Ngo, Quoc Anh & Orange, D. & Pham, Dinh Rinh & Tran, Duc Toan & Tran, Sy Hai & Trinh, Anh Du, 2014. "Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam," Agricultural Water Management, Elsevier, vol. 146(C), pages 314-323.
    2. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    2. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    3. Haiyan Fang, 2021. "Responses of Runoff and Soil Loss on Slopes to Land Use Management and Rainfall Characteristics in Northern China," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    4. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    5. Willis Ndeda Ochilo & Stefan Toepfer & Privat Ndayihanzamaso & Idah Mugambi & Janny Vos & Celestin Niyongere, 2022. "Assessing the Plant Health System of Burundi: What It Is, Who Matters and Why," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    6. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    7. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    8. Sen Chakraborty, Kritika & Chakraborty, Avinandan & Berrens, Robert P., 2023. "Valuing soil erosion control investments in Nigerian agricultural lands: A hedonic pricing model," World Development, Elsevier, vol. 170(C).
    9. Smith, Jo & Nayak, Dali & Datta, Ashim & Narkhede, Wasudeo Nivrutti & Albanito, Fabrizio & Balana, Bedru & Bandyopadhyay, Sanjoy K. & Black, Helaina & Boke, Shiferaw & Brand, Alison & Byg, Anja & Dina, 2020. "A systems model describing the impact of organic resource use on farming households in low to middle income countries," Agricultural Systems, Elsevier, vol. 184(C).
    10. Chen, Die & Wei, Wei & Chen, Liding, 2020. "How can terracing impact on soil moisture variation in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 227(C).
    11. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    12. Mideksa, Babu & Muluken, Gezahegn & Eric, Ndemo, 2023. "The impact of soil and water conservation practices on food security in eastern Ethiopia. A propensity score matching approach," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Pang, Jihong & Liu, Xiaojing & Huang, Qinghua, 2020. "A new quality evaluation system of soil and water conservation for sustainable agricultural development," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Abyiot Teklu & Belay Simane & Mintewab Bezabih, 2022. "Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    15. David Kincl & David Kabelka & Darina Heřmanovská & Jan Vopravil & Rudolf Urban & Tomáš Křemen, 2022. "Evaluation of sediment barriers in relation to the trap of soil particles," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 201-210.
    16. Shi, Chang & Qu, Liqin & Zhang, Qingwen & Li, Xuecao, 2021. "A systematic review on comprehensive sloping farmland utilization based on a perspective of scientometrics analysis," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Hope Mwanake & Bano Mehdi-Schulz & Karsten Schulz & Nzula Kitaka & Luke O. Olang & Jakob Lederer & Mathew Herrnegger, 2023. "Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion," Agriculture, MDPI, vol. 13(7), pages 1-32, July.
    18. Dickson N. Khainga & Paswel P. Marenya & Maria Luz Quinhentos, 2021. "How much is enough? How multi-season exposure to demonstrations affects the use of conservation farming practices in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 11067-11089, July.
    19. Dexun Jiang & Yiting Guo & Jie Liu & Hao Zhu & Zhijuan Qi & Yuanlong Chen, 2021. "Spatiotemporal Assessment of Water Conservation Function for Ecosystem Service Management Using a GIS-Based Data-Fusion Analysis Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4309-4323, October.
    20. Yong Li & Yi Wang & Ji Liu & Meihui Wang & Jianlin Shen & Xinliang Liu, 2023. "Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics," Land, MDPI, vol. 12(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10421-:d:638576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.