IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10213-d634397.html
   My bibliography  Save this article

Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran

Author

Listed:
  • Amirhossein Fathi

    (School of Mechanical Engineering, Shiraz University, Shiraz 71557-13876, Iran)

  • Masoomeh Bararzadeh Ledari

    (Department of Energy Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-8639, Iran)

  • Yadollah Saboohi

    (Department of Energy Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-8639, Iran)

Abstract

The paper studies the optimum panel horizontal orientation angle toward the Sun and the optimum time interval of the panel’s movement. The optimum time intervals or panel movement can change the rate of input energy to the panel surface in Iran. For this purpose, a neural network has been trained to estimate the intensity of solar radiation in Iran. After model validation, the intensity of solar radiation has been estimated by selecting adequate geographical regions. Based on the intensity of sunlight, Iran has been divided into ten regions. In these regions, 40 cities have been randomly selected to study the effect of the panel’s angle variations within appropriate time intervals, as well as equal time intervals. The results show that the choice of the mounting system with the possibility of five angles’ implementation can increase the amount of solar energy between 3.9% and 7.4%. Compared to this number of angles at the equal time intervals, the amount of incoming solar energy has increased by 3% to 7%. In the first and second cases, the area of the power plant increases by about 12% to 24% compared to the yearly optimum tilt angle. Moreover, the amount of radiation incoming to the panel with the optimum operating angle is in alignment with the results of PVsyst software.

Suggested Citation

  • Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10213-:d:634397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Haurant, Pierrick & Hared, Idriss, 2013. "The first disaggregated solar atlas of Djibouti: A decision-making tool for solar systems integration in the energy scheme," Renewable Energy, Elsevier, vol. 57(C), pages 57-69.
    2. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    3. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    4. Arash Haghparast-Kashani & Pejman Saleh-Izadkhast & Hamid-Reza Lari, 2009. "Development of optimum solar irradiation energy model for Iran," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 31(2), pages 132-149.
    5. Besarati, Saeb M. & Padilla, Ricardo Vasquez & Goswami, D. Yogi & Stefanakos, Elias, 2013. "The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants," Renewable Energy, Elsevier, vol. 53(C), pages 193-199.
    6. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    7. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    8. Fakouriyan, Samaneh & Saboohi, Yadollah & Fathi, Amirhossein, 2019. "Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production," Renewable Energy, Elsevier, vol. 134(C), pages 1362-1368.
    9. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    2. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    4. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    5. Achkari, O. & El Fadar, A. & Amlal, I. & Haddi, A. & Hamidoun, M. & Hamdoune, S., 2021. "A new sun-tracking approach for energy saving," Renewable Energy, Elsevier, vol. 169(C), pages 820-835.
    6. Moon Keun Kim & Khalid Osman Abdulkadir & Jiying Liu & Joon-Ho Choi & Huiqing Wen, 2021. "Optimal Design Strategy of a Solar Reflector Combining Photovoltaic Panels to Improve Electricity Output: A Case Study in Calgary, Canada," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    7. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    8. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    9. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    10. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    11. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    12. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    13. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    14. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    15. Dácil Díaz-Bello & Carlos Vargas-Salgado & Jesus Águila-León & Fabián Lara-Vargas, 2023. "Methodology to Estimate the Impact of the DC to AC Power Ratio, Azimuth, and Slope on Clipping Losses of Solar Photovoltaic Inverters: Application to a PV System Located in Valencia Spain," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    16. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    17. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    18. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    19. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    20. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10213-:d:634397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.