IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10109-d632241.html
   My bibliography  Save this article

Tandem Design of Bus Priority Based on a Pre-Signal System

Author

Listed:
  • Yutong Sun

    (College of Transportation, Nanling Campus, Jilin University, Changchun 130022, China)

  • Jin Li

    (College of Transportation, Nanling Campus, Jilin University, Changchun 130022, China)

  • Xiaozhong Wei

    (Ganzhou Transportation Bureau, Jiangxi 341000, China)

  • Yuling Jiao

    (College of Transportation, Nanling Campus, Jilin University, Changchun 130022, China)

Abstract

Giving buses priority is an important measure to improve the attractiveness of public transport and to reduce urban traffic congestion. Reducing bus service delays as much as possible will have a positive impact on urban traffic. Based on the pre-signal system, a bus at an intersection with a left-turn special phase is optimized by “tandem design”. The design model is applied to the entrance of an intersection to study the process of vehicle arrival and departure at the main signal and pre-signal, and to calculate and analyze the delay changes of buses, straight social vehicles (meaning vehicles other than those required to be open to traffic) and left-turn vehicles before and after the adoption of “tandem design”. The results show that when the vehicle capacity at the intersection is saturated, the delays to buses and the delays of left-turn vehicles will be significantly reduced once the “tandem design” is adopted at the entrance of a cross intersection with a special left-turn phase. However, it has little effect on the delay of straight-on vehicles; with this system, the total delay experienced by straight vehicles will be reduced to one cycle.

Suggested Citation

  • Yutong Sun & Jin Li & Xiaozhong Wei & Yuling Jiao, 2021. "Tandem Design of Bus Priority Based on a Pre-Signal System," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10109-:d:632241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eichler, Michael & Daganzo, Carlos F., 2006. "Bus lanes with intermittent priority: Strategy formulae and an evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 731-744, November.
    2. Wu, Jianping & Hounsell, Nick, 1998. "Bus Priority Using pre-signals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 563-583, November.
    3. Chen, Xumei & Yu, Lei & Zhang, Yushi & Guo, Jifu, 2009. "Analyzing urban bus service reliability at the stop, route, and network levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 722-734, October.
    4. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    5. Guler, S. Ilgin & Menendez, Monica, 2014. "Analytical formulation and empirical evaluation of pre-signals for bus priority," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    2. Haitao, He & Menendez, Monica & Ilgin Guler, S., 2018. "Analytical evaluation of flexible-sharing strategies on multimodal arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 364-379.
    3. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    4. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    5. Nicolas Chiabaut & Anais Barcet, 2019. "Demonstration and evaluation of an intermittent bus lane strategy," Public Transport, Springer, vol. 11(3), pages 443-456, October.
    6. Wu, Jiaming & Kulcsár, Balázs & Ahn, Soyoung & Qu, Xiaobo, 2020. "Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 223-239.
    7. Islam, Tarikul & Vu, Hai L. & Hoang, Nam H. & Cricenti, Antonio, 2018. "A linear bus rapid transit with transit signal priority formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 163-184.
    8. Bo Feng & Mingming Zheng & Yan Liu, 2023. "Optimization of Signal Timing for the Contraflow Left-Turn Lane at Signalized Intersections Based on Delay Analysis," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    9. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    10. R. Lamotte & A. de Palma & N. Geroliminis, 2020. "Impacts of Metering-Based Dynamic Priority Schemes," THEMA Working Papers 2020-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    11. Chen Zhao & Yulin Chang & Peng Zhang, 2018. "Coordinated Control Model of Main-Signal and Pre-Signal for Intersections with Dynamic Waiting Lanes," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    12. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    13. Wu, Jiaming & Kulcsár, Balázs & Selpi, & Qu, Xiaobo, 2021. "A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 81-98.
    14. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.
    15. Huang, Jian & Hu, Mao-Bin & Jiang, Rui & Li, Ming, 2018. "Effect of pre-signals in a Manhattan-like urban traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 71-85.
    16. Deka, Devajyoti, 2014. "An exploration of the environmental and rider characteristics associated with disability paratransit trip delay," Journal of Transport Geography, Elsevier, vol. 38(C), pages 75-87.
    17. Guler, S. Ilgin & Menendez, Monica, 2014. "Analytical formulation and empirical evaluation of pre-signals for bus priority," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 41-53.
    18. Nyaki Prosper S. & Bwire Hannibal & Mushule Nurdin K., 2020. "Travel Time Reliability of Bus Operation in Heterogeneous Traffic Conditions of Dar es Salaam City, Tanzania," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(2), pages 44-55, November.
    19. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    20. Ji, Yanjie & Gao, Liangpeng & Chen, Dandan & Ma, Xinwei & Zhang, Ruochen, 2018. "How does a static measure influence passengers’ boarding behaviors and bus dwell time? Simulated evidence from Nanjing bus stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 13-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10109-:d:632241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.