IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9724-d625172.html
   My bibliography  Save this article

Lane-Level Map-Aiding Approach Based on Non-Lane-Level Digital Map Data in Road Transport Security

Author

Listed:
  • Philipp Luz

    (Institute of Engineering Geodesy (IIGS), University of Stuttgart, D-70174 Stuttgart, Germany)

  • Li Zhang

    (Institute of Engineering Geodesy (IIGS), University of Stuttgart, D-70174 Stuttgart, Germany)

  • Jinyue Wang

    (Institute of Engineering Geodesy (IIGS), University of Stuttgart, D-70174 Stuttgart, Germany)

  • Volker Schwieger

    (Institute of Engineering Geodesy (IIGS), University of Stuttgart, D-70174 Stuttgart, Germany)

Abstract

To prevent terror attacks in which trucks are used as weapons as happened in Nice or Berlin in 2016, the European Project Autonomous Emergency Maneuvering and Movement Monitoring for Road Transport Security (TransSec) was launched in 2018. One crucial point of this project is the development of a map-aiding approach for the localization of vehicles on digital maps, so that the information in digital map data can be used to detect prohibited driving maneuvers, such as off-road or wrong-way drivers. For example, a lane-level map-aiding approach is required for wrong-way driver detection. Navigation Data Standard (NDS) is one of the worldwide map standards developed by several automobile manufacturers. So far, there is no lane-level NDS map covers a large area, therefore, it was decided to use the latest available NDS map without lane level accuracy. In this paper, a lane-level map-aiding approach based on a non-lane-level NDS map is presented. Due to the inaccuracy of vehicle position and digital map the map-aiding does not always provide the correct results, so probabilities of off-road and wrong-way diver detection are estimated to support risk estimation. The performance of the developed map-aiding approach is comprehensively evaluated with both real and simulated trajectories.

Suggested Citation

  • Philipp Luz & Li Zhang & Jinyue Wang & Volker Schwieger, 2021. "Lane-Level Map-Aiding Approach Based on Non-Lane-Level Digital Map Data in Road Transport Security," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9724-:d:625172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Fabian Ehmke, 2012. "Routing in City Logistics," International Series in Operations Research & Management Science, in: Integration of Information and Optimization Models for Routing in City Logistics, edition 127, chapter 0, pages 119-156, Springer.
    2. Giuseppina Pappalardo & Salvatore Cafiso & Alessandro Di Graziano & Alessandro Severino, 2021. "Decision Tree Method to Analyze the Performance of Lane Support Systems," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    3. Jan Fabian Ehmke, 2012. "Integration of Information and Optimization Models for Routing in City Logistics," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-3628-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    2. Shenle Pan & Vaggelis Giannikas & Yufei Han & Etta Grover-Silva & Bin Qiao, 2017. "Using Customer-related Data to Enhance E-grocery Home Delivery," Post-Print hal-01482901, HAL.
    3. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    4. Groß, Patrick-Oliver & Ehmke, Jan Fabian & Mattfeld, Dirk Christian, 2020. "Interval travel times for robust synchronization in city logistics vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Katarzyna Huk & Agata GC3rak & Natalia Bajda & Weronika Bednarek, 2021. "Urban transport in the concept of city logistics and sustainable developmen," Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie / The Malopolska School of Economics in Tarnow Research Papers Collection, Malopolska School of Economics in Tarnow, vol. 51(3), pages 107-125, September.
    6. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    7. Wang, James J. & Xiao, Zuopeng, 2015. "Co-evolution between etailing and parcel express industry and its geographical imprints: The case of China," Journal of Transport Geography, Elsevier, vol. 46(C), pages 20-34.
    8. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    9. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    10. Marcucci, Edoardo & Gatta, Valerio & Scaccia, Luisa, 2015. "Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 239-249.
    11. Taesung Hwang & Yanfeng Ouyang, 2015. "Urban Freight Truck Routing under Stochastic Congestion and Emission Considerations," Sustainability, MDPI, vol. 7(6), pages 1-16, May.
    12. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    13. Shao, Saijun & Xu, Gangyan & Li, Ming & Huang, George Q., 2019. "Synchronizing e-commerce city logistics with sliding time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 17-28.
    14. Masa Slabinac, 2015. "Innovative Solutions For A “Last-Mile” Delivery – A European Experience," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 15, pages 111-129.
    15. Dietmar Göhlich & Kai Nagel & Anne Magdalene Syré & Alexander Grahle & Kai Martins-Turner & Ricardo Ewert & Ricardo Miranda Jahn & Dominic Jefferies, 2021. "Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    16. Clara Evi Citraningtyas ˆ—, 2017. "Readers’ Responses On Indonesian Folk-Tales: A Proposal For Folktale Reconstruction," International Journal of Humanities, Arts and Social Sciences, Dr. Mohammad Hamad Al-khresheh, vol. 3(5), pages 184-191.
    17. Zhangyuan He & Hans-Dietrich Haasis, 2020. "A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    18. Melinda Timea Fülöp & Miklós Gubán & György Kovács & Mihály Avornicului, 2021. "Economic Development Based on a Mathematical Model: An Optimal Solution Method for the Fuel Supply of International Road Transport Activity," Energies, MDPI, vol. 14(10), pages 1-22, May.
    19. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    20. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9724-:d:625172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.