IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p90-d467400.html
   My bibliography  Save this article

Blockchain-Based Securing of Data Exchange in a Power Transmission System Considering Congestion Management and Social Welfare

Author

Listed:
  • Moslem Dehghani

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71555/313, Iran)

  • Mohammad Ghiasi

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71555/313, Iran)

  • Taher Niknam

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71555/313, Iran)

  • Abdollah Kavousi-Fard

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71555/313, Iran)

  • Mokhtar Shasadeghi

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71555/313, Iran)

  • Noradin Ghadimi

    (Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil 19585/466, Iran
    Department of Industrial Engineering, Ankara Yıldırım Beyazıt University (AYBU), 06760 Ankara, Turkey)

  • Farhad Taghizadeh-Hesary

    (Social Science Research Institute, Tokai University, Kanagawa, Hiratsuka 259-1292, Japan)

Abstract

Using blockchain technology as one of the new methods to enhance the cyber and physical security of power systems has grown in importance over the past few years. Blockchain can also be used to improve social welfare and provide sustainable energy for consumers. In this article, the effect of distributed generation (DG) resources on the transmission power lines and consequently fixing its conjunction and reaching the optimal goals and policies of this issue to exploit these resources is investigated. In order to evaluate the system security level, a false data injection attack (FDIA) is launched on the information exchanged between independent system operation (ISO) and under-operating agents. The results are analyzed based on the cyber-attack, wherein the loss of network stability as well as economic losses to the operator would be the outcomes. It is demonstrated that cyber-attacks can cause the operation of distributed production resources to not be carried out correctly and the network conjunction will fall to a large extent; with the elimination of social welfare, the main goals and policies of an independent system operator as an upstream entity are not fulfilled. Besides, the contracts between independent system operators with distributed production resources are not properly closed. In order to stop malicious attacks, a secured policy architecture based on blockchain is developed to keep the security of the data exchanged between ISO and under-operating agents. The obtained results of the simulation confirm the effectiveness of using blockchain to enhance the social welfare for power system users. Besides, it is demonstrated that ISO can modify its polices and use the potential and benefits of distributed generation units to increase social welfare and reduce line density by concluding contracts in accordance with the production values given.

Suggested Citation

  • Moslem Dehghani & Mohammad Ghiasi & Taher Niknam & Abdollah Kavousi-Fard & Mokhtar Shasadeghi & Noradin Ghadimi & Farhad Taghizadeh-Hesary, 2020. "Blockchain-Based Securing of Data Exchange in a Power Transmission System Considering Congestion Management and Social Welfare," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:90-:d:467400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/90/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/90/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    2. Guillaume Chapron, 2017. "The environment needs cryptogovernance," Nature, Nature, vol. 545(7655), pages 403-405, May.
    3. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    4. Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinicius Braga Ferreira da Costa & Gabriel Nasser Doyle de Doile & Gustavo Troiano & Bruno Henriques Dias & Benedito Donizeti Bonatto & Tiago Soares & Walmir de Freitas Filho, 2022. "Electricity Markets in the Context of Distributed Energy Resources and Demand Response Programs: Main Developments and Challenges Based on a Systematic Literature Review," Energies, MDPI, vol. 15(20), pages 1-43, October.
    2. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    3. Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).
    4. Yang, Yiran & Li, Gang & Luo, Tao & Al-Bahrani, Mohammed & Al-Ammar, Essam A. & Sillanpaa, Mika & Ali, Shafaqat & Leng, Xiujuan, 2023. "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks," Energy, Elsevier, vol. 268(C).
    5. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    2. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    3. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    4. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    5. Oprea, Simona-Vasilica & Bâra, Adela, 2021. "Devising a trading mechanism with a joint price adjustment for local electricity markets using blockchain. Insights for policy makers," Energy Policy, Elsevier, vol. 152(C).
    6. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    7. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    8. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).
    9. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    10. Parakram Pyakurel & Laurie Wright, 2021. "Energy and resources cooperation for greenhouse gases emissions reduction of industrial sector," Energy & Environment, , vol. 32(4), pages 635-647, June.
    11. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    12. Bailu Fu & Zhan Shu & Xiaogang Liu, 2018. "Blockchain Enhanced Emission Trading Framework in Fashion Apparel Manufacturing Industry," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    13. Tobias Rösch & Peter Treffinger & Barbara Koch, 2021. "Regional Flexibility Markets—Solutions to the European Energy Distribution Grid—A Systematic Review and Research Agenda," Energies, MDPI, vol. 14(9), pages 1-32, April.
    14. Ante, L. & Steinmetz, F. & Fiedler, I., 2021. "Blockchain and energy: A bibliometric analysis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Zhu, Shuai & Song, Malin & Lim, Ming Kim & Wang, Jianlin & Zhao, Jiajia, 2020. "The development of energy blockchain and its implications for China's energy sector," Resources Policy, Elsevier, vol. 66(C).
    16. Nazir Ullah & Waleed S. Alnumay & Waleed Mugahed Al-Rahmi & Ahmed Ibrahim Alzahrani & Hosam Al-Samarraie, 2020. "Modeling Cost Saving and Innovativeness for Blockchain Technology Adoption by Energy Management," Energies, MDPI, vol. 13(18), pages 1-22, September.
    17. Longze Wang & Shucen Jiao & Yu Xie & Saif Mubaarak & Delong Zhang & Jinxin Liu & Siyu Jiang & Yan Zhang & Meicheng Li, 2021. "A Permissioned Blockchain-Based Energy Management System for Renewable Energy Microgrids," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    18. Hou, Jianchao & Wang, Che & Luo, Sai, 2020. "How to improve the competiveness of distributed energy resources in China with blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    20. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:90-:d:467400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.