IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2994-d343055.html
   My bibliography  Save this article

Research on the Barrier Analysis and Strength Measurement of a Prefabricated Building Design

Author

Listed:
  • Zhenmin Yuan

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Guodong Ni

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Linxiu Wang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Yaning Qiao

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Chengshuang Sun

    (School of Economics and Management Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

  • Na Xu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology, Xuzhou 221116, China)

  • Wenshun Wang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Digitalized Construction and Knowledge Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

As a sustainable and cleaner type of facility, prefabricated buildings face more design barriers than traditional non-prefabricated buildings. Identifying and managing these barriers is key to improving the success rate of prefabricated building design. However, direct studies on these design barriers are extremely rare. The present study solved this problem by combining multiple methods, including grounded theory (GT), structured self-intersection matrix (SSIM), analytic network process (ANP), and the linear weighted sum method (LWSM). GT was adopted to identify the barriers to prefabricated building design and then SSIM was used to analyze the interactions among them. The eight design barriers were finally identified and classified into three clusters: technical barriers, economic barriers, and management barriers. A further analysis found that there is dependence and feedback among these clusters. The technical barrier cluster and management barrier cluster experience self-feedback. A network model based on ANP was next established to calculate the weights of the barrier elements and then this model was combined with LWSM to evaluate the overall design barrier strength of a project case. The results showed that architectural individualization has the greatest impact on prefabricated building design, followed by the collaborative issues among multiple units and professional designer issues. The overall design barrier strength of the project case was larger. Therefore, the first suggestion provided to the facility management sector is to establish a library for standard house types to achieve architectural design through multihouse combinations.

Suggested Citation

  • Zhenmin Yuan & Guodong Ni & Linxiu Wang & Yaning Qiao & Chengshuang Sun & Na Xu & Wenshun Wang, 2020. "Research on the Barrier Analysis and Strength Measurement of a Prefabricated Building Design," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2994-:d:343055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanhong Yin & Yuanwen He & Lei Zhang & Dan Zhao, 2019. "Impact of Building Environment on Residential Satisfaction: A Case Study of Ningbo," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    2. Ke Chen & Weisheng Lu, 2018. "Design for Manufacture and Assembly Oriented Design Approach to a Curtain Wall System: A Case Study of a Commercial Building in Wuhan, China," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    3. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2018. "Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    4. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    5. Szu-Hsien Peng, 2019. "Landscape Assessment for Stream Regulation Works in a Watershed Using the Analytic Network Process (ANP)," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    6. Kovacic, Iva & Zoller, Veronika, 2015. "Building life cycle optimization tools for early design phases," Energy, Elsevier, vol. 92(P3), pages 409-419.
    7. Liang Ma & Yun Le & Hongyang Li & Ruoyu Jin & Poorang Piroozfar & Mingqiang Liu, 2018. "Regional Comparisons of Contemporary Construction Industry Sustainable Concepts in the Chinese Context," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    8. Lara Jaillon & Chi-Sun Poon, 2010. "Design issues of using prefabrication in Hong Kong building construction," Construction Management and Economics, Taylor & Francis Journals, vol. 28(10), pages 1025-1042.
    9. Stephen Fox & Laurence Marsh & Graham Cockerham, 2001. "Design for manufacture: A strategy for successful application to buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 19(5), pages 493-502.
    10. Ruiling Wang & Guo Liu & Jingyang Zhou & Jianhui Wang, 2019. "Identifying the Critical Stakeholders for the Sustainable Development of Architectural Heritage of Tourism: From the Perspective of China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengwei Ye & Junwu Wang & Xiang Si & Shiman Zhao & Qiyun Huang, 2022. "Analysis on Dynamic Evolution of the Cost Risk of Prefabricated Building Based on DBN," Sustainability, MDPI, vol. 14(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Langston & Weiwei Zhang, 2021. "DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    2. Hosang Hyun & Hyung-Geun Kim & Jin-Sung Kim, 2022. "Integrated Off-Site Construction Design Process including DfMA Considerations," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    3. Xin Jin & Geoffrey Q. P. Shen & E. M. A. C. Ekanayake, 2021. "Improving Construction Industrialization Practices from a Socio-Technical System Perspective: A Hong Kong Case," IJERPH, MDPI, vol. 18(17), pages 1-20, August.
    4. Qiuyu Wang & Zhiqi Gong & Chengkui Liu, 2022. "Risk Network Evaluation of Prefabricated Building Projects in Underdeveloped Areas: A Case Study in Qinghai," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    5. Manman Xia & Lemeng Zhao & Li Zhao, 2022. "A Comprehensive Risk-Assessment Method for Prefabricated Buildings Using EPC: A Case Study from China," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    6. Weiping Jiang & Lirong Luo & Zezhou Wu & Jianbo Fei & Maxwell Fordjour Antwi-Afari & Tao Yu, 2019. "An Investigation of the Effectiveness of Prefabrication Incentive Policies in China," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    7. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.
    8. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    9. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    10. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    11. Merve AnaƧ & Gulden Gumusburun Ayalp & Kamil Erdayandi, 2023. "Prefabricated Construction Risks: A Holistic Exploration through Advanced Bibliometric Tool and Content Analysis," Sustainability, MDPI, vol. 15(15), pages 1-31, August.
    12. Yihu Chen & Yiyan Chen & Dan Lu & Min Zhang & Pengyuan Lu & Jingyi Chen, 2022. "Experimental and Numerical Study of Flexural Stiffness Performance of Ultra-Thin, Prefabricated, and Laminated Slab Base Slabs," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    13. Qi Mu & Fabrizio Aimar, 2022. "How Are Historical Villages Changed? A Systematic Literature Review on European and Chinese Cultural Heritage Preservation Practices in Rural Areas," Land, MDPI, vol. 11(7), pages 1-20, June.
    14. Mateusz Naramski & Adam R. Szromek, 2019. "Configuring a Trust-based Inter-organizational Cooperation Network for Post-industrial Tourist Organizations on a Tourist Route," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    15. Hosang Hyun & Hyunsoo Kim & Hyun-Soo Lee & Moonseo Park & Jeonghoon Lee, 2020. "Integrated Design Process for Modular Construction Projects to Reduce Rework," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    16. Caraiman Adrian-Cosmin, 2022. "Life Cycle Cost In The Built Environment In The Context Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 298-318, August.
    17. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    18. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    19. Wen Jiang & Zhu Huang & Ying Peng & Yaqi Fang & Yunzhong Cao, 2020. "Factors affecting prefabricated construction promotion in China: A structural equation modeling approach," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    20. Kaicheng Shen & Chen Cheng & Xiaodong Li & Zhihui Zhang, 2019. "Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing," Sustainability, MDPI, vol. 11(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2994-:d:343055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.