IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5469-d381336.html
   My bibliography  Save this article

Mobility Acceptance Factors of an Automated Shuttle Bus Last-Mile Service

Author

Listed:
  • Ralf-Martin Soe

    (FinEst Twins Smart City Center of Excellence, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Jaanus Müür

    (Ragnar Nurkse Department of Innovation and Governance, Tallinn University of Technology, 12618 Tallinn, Estonia)

Abstract

The main interest of this paper is to analyze the mobility acceptance factors of an automated shuttle bus last-mile service. There is limited research on the passengers’ perception of security and safety of automated mobility, whereas prior research is mostly based on surveys interested in attitudes towards self-driving vehicles, without being linked to the experience. We, on the other hand, are interested in passengers’ feeling of security and safety, after taking a ride with an automated shuttle in an open urban environment. For studying this, we conducted an automated shuttle bus last-mile pilot during a four-month period in the city of Tallinn in late 2019. The method is a case study focusing on one city with several tools for data collection applied (surveys, interviews, document analysis). The pilot, open and free for everybody, attracted approximately 4000 passengers, out of which 4% responded to the online feedback survey. For studying the operational capacity, we had a panel interview with operators of the shuttle service, in addition to analyzing daily operational log files. The results indicate that passengers’ perceived feeling of security and safety onboard was remarkably high, after taking a ride (and lower without a ride, in a different control group). The bus was operated only if operational capacity was secured, thus having significant downtime in service due to environment, technology and traffic-related factors.

Suggested Citation

  • Ralf-Martin Soe & Jaanus Müür, 2020. "Mobility Acceptance Factors of an Automated Shuttle Bus Last-Mile Service," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5469-:d:381336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    2. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    3. Xiaoxia Dong & Matthew DiScenna & Erick Guerra, 2019. "Transit user perceptions of driverless buses," Transportation, Springer, vol. 46(1), pages 35-50, February.
    4. Prateek Bansal & Kara M. Kockelman, 2018. "Are we ready to embrace connected and self-driving vehicles? A case study of Texans," Transportation, Springer, vol. 45(2), pages 641-675, March.
    5. Cohen, Scott A. & Hopkins, Debbie, 2019. "Autonomous vehicles and the future of urban tourism," Annals of Tourism Research, Elsevier, vol. 74(C), pages 33-42.
    6. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    7. Aybike Ongel & Erik Loewer & Felix Roemer & Ganesh Sethuraman & Fengqi Chang & Markus Lienkamp, 2019. "Economic Assessment of Autonomous Electric Microtransit Vehicles," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    8. Itf, 2015. "Urban Mobility System Upgrade: How shared self-driving cars could change city traffic," International Transport Forum Policy Papers 6, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naihui Wang & Yulong Pei & Hao Fu, 2022. "Public Acceptance of Last-Mile Shuttle Bus Services with Automation and Electrification in Cold-Climate Environments," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    2. Yinfei Feng & Zhichao Cao & Silin Zhang, 2022. "Shuttle Bus Timetable Adjustment in Response to Behind-Schedule Commuter Railway Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    3. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    4. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    2. Xiaobei Jiang & Wenlin Yu & Wenjie Li & Jiawen Guo & Xizheng Chen & Hongwei Guo & Wuhong Wang & Tao Chen, 2021. "Factors Affecting the Acceptance and Willingness-to-Pay of End-Users: A Survey Analysis on Automated Vehicles," Sustainability, MDPI, vol. 13(23), pages 1-12, November.
    3. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    5. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    6. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    7. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Kim, Sung Hoo & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "Identifying latent mode-use propensity segments in an all-AV era," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 192-207.
    9. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    10. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    11. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    12. Sehyun Tak & Soomin Woo & Sungjin Park & Sunghoon Kim, 2021. "The City-Wide Impacts of the Interactions between Shared Autonomous Vehicle-Based Mobility Services and the Public Transportation System," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    13. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    14. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    15. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    16. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    17. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2020. "Modeling Americans’ autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    18. Rosell, Jordi & Allen, Jaime, 2020. "Test-riding the driverless bus: Determinants of satisfaction and reuse intention in eight test-track locations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 166-189.
    19. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    20. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5469-:d:381336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.