IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4400-d363849.html
   My bibliography  Save this article

Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain

Author

Listed:
  • Md Arifur Rahaman

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    The authors contributed equally to this work.)

  • Xiaoying Zhan

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    The authors contributed equally to this work.)

  • Qingwen Zhang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Shuqin Li

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Shengmei Lv

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Yuting Long

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Hailing Zeng

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

Abstract

Digestate and biogas slurry (BS) are the byproduct of biogas engineering that could be used for elevating plant growth. However, the consequent emissions of ammonia from BS are considered a severe threat to the atmosphere. Herein, we conducted two consecutive field experiments with wheat–maize rotations to find out the optimum ratio of BS to combine with chemical fertilizer (CF) to reduce ammonia volatilization (AV) while keeping the stable crop yield. In maize season, 226.5 kg N/ha of CF was applied. In wheat season, 226.5 kg N/ha was applied at different ratios (100%, 80%, and 50%) between BS and CF. Our results found that the maximum yield of 6250 kg/ha was produced by CF, and this yield could be obtained through a combined application of 38% BS mixed with CF. Highest AV produced of 16.08 kg/ha by CF. BS treatments significantly reduced the emission from 18% to 32% in comparison to CF. The combined application of BS-CF produced the highest yield due to essential nutrients coming from both BS-CF. Subsequently, it reduced the AV depending on fertilizer type and fertilizer rate. An optimal ratio of 38% BS was recommended to produce the highest yield and lowest ammonia emissions. The application of BS together with different ratios of CF could be an alternative agricultural strategy to obtain desired crop yield and reduce AV in North China Plain (NCP).

Suggested Citation

  • Md Arifur Rahaman & Xiaoying Zhan & Qingwen Zhang & Shuqin Li & Shengmei Lv & Yuting Long & Hailing Zeng, 2020. "Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4400-:d:363849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    2. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    3. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Ran & Xinlu Bai & Yan Long & Ping Ai, 2022. "Yield and Quality of Rice under the Effects of Digestate Application," Agriculture, MDPI, vol. 12(4), pages 1-10, April.
    2. Seongmin Kang & Yoonjung Hong & Moon Soon Im & Seong-Dong Kim & Eui-Chan Jeon, 2020. "Key Factors in Measuring Ammonia Emissions with Dynamic Flux Chamber in Barns," Sustainability, MDPI, vol. 12(15), pages 1-13, August.
    3. Jiao Tang & Jinzhong Yin & Anthony J. Davy & Feifei Pan & Xu Han & Shaonan Huang & Dafu Wu, 2022. "Biogas Slurry as an Alternative to Chemical Fertilizer: Changes in Soil Properties and Microbial Communities of Fluvo-Aquic Soil in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    2. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    4. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    5. Zhen-Zhen Zheng & Li-Wei Zheng & Min Nina Xu & Ehui Tan & David A. Hutchins & Wenchao Deng & Yao Zhang & Dalin Shi & Minhan Dai & Shuh-Ji Kao, 2020. "Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Bangxi Zhang & Rongxiu Yin & Quanquan Wei & Song Qin & Yutao Peng & Baige Zhang, 2022. "Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil," Sustainability, MDPI, vol. 14(13), pages 1-10, June.
    7. Douglas, Niall Edward, 2008. "Modelling the Costs of Climate Change and its Costs of Mitigation: A Scientific Approach," MPRA Paper 13650, University Library of Munich, Germany.
    8. Rizwan Yaseen & Omar Aziz & Muhammad Hamzah Saleem & Muhammad Riaz & Muhammad Zafar-ul-Hye & Muzammal Rehman & Shafaqat Ali & Muhammad Rizwan & Mohammed Nasser Alyemeni & Hamed A. El-Serehy & Fahad A., 2020. "Ameliorating the Drought Stress for Wheat Growth through Application of ACC-Deaminase Containing Rhizobacteria along with Biogas Slurry," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    9. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    11. Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.
    12. Geshere Abdisa Gurmesa & Ang Wang & Shanlong Li & Shushi Peng & Wim Vries & Per Gundersen & Philippe Ciais & Oliver L. Phillips & Erik A. Hobbie & Weixing Zhu & Knute Nadelhoffer & Yi Xi & Edith Bai &, 2022. "Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Haoyu Jin & Chao Zhang & Siyu Meng & Qin Wang & Xiaokun Ding & Ling Meng & Yunyun Zhuang & Xiaohong Yao & Yang Gao & Feng Shi & Thomas Mock & Huiwang Gao, 2024. "Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Yukio Watanabe & Wataru Aoki & Mitsuyoshi Ueda, 2021. "Sustainable Biological Ammonia Production towards a Carbon-Free Society," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    16. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    17. Gao, Wei & Hong, Bongghi & Swaney, Dennis P. & Howarth, Robert W. & Guo, Huaicheng, 2016. "A system dynamics model for managing regional N inputs from human activities," Ecological Modelling, Elsevier, vol. 322(C), pages 82-91.
    18. Xiao Ma & Fen Zhang & Fabo Liu & Guangzheng Guo & Taihong Cheng & Junjie Wang & Yuanpeng Shen & Tao Liang & Xinping Chen & Xiaozhong Wang, 2022. "An Integrated Nitrogen Management Strategy Promotes Open-Field Pepper Yield, Crop Nitrogen Uptake, and Nitrogen Use Efficiency in Southwest China," Agriculture, MDPI, vol. 12(4), pages 1-11, April.
    19. Zhanlei Pan & Rui Wang & Yan Liu & Lin Wang & Xunhua Zheng & Zhisheng Yao & Hongbo He & Xiaochen Zhang, 2022. "Characteristics of N 2 and N 2 O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15 N Gas Flux Method," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    20. Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4400-:d:363849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.