IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4160-d360361.html
   My bibliography  Save this article

Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area

Author

Listed:
  • Pengfei Song

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China
    College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wen Qin

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China
    College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • YanGan Huang

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China)

  • Lei Wang

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China)

  • Zhenyuan Cai

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China
    Qinghai Provincial Key Laboratory of Animal Ecological Genomics, 23th, Xinning Road, Xining 810001, China)

  • Tongzuo Zhang

    (Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th, Xinning Road, Xining 810001, China
    Qinghai Provincial Key Laboratory of Animal Ecological Genomics, 23th, Xinning Road, Xining 810001, China)

Abstract

The composition of gut microbiota is closely related to health and nutrition of livestock. Research on the interaction between gut microbiota in livestock and grazing management strategies is unfortunately sparse. By studying the compositions of gut microbiota in sheep and goats in a single, mixed grazing population under the control of herdsman, as well as those of free-range camels in the same area of Qaidam Basin, we found that the composition of gut microbiota between sheep and goats showed no significant difference. However, there were significant differences between mixed group and camels at α- and β-diversities. We speculate that grazing management can shape gut microbial diversity indirectly. Mixed grazing under the control of herdsman lead to similarities in the diversity of gut microbiota among different species and limit their diversities of gut microbiota, which is not conducive to healthy growth of the host. On the contrary, free-range grazing is better for the diversity of gut microbiota. In order to sustainably manage populations of livestock, gut microbiota analysis may prove to be an important indicator for evaluating the merits of different grazing management strategies. Our results lay a foundation to improve the health of livestock and grazing management.

Suggested Citation

  • Pengfei Song & Wen Qin & YanGan Huang & Lei Wang & Zhenyuan Cai & Tongzuo Zhang, 2020. "Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4160-:d:360361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Robert White & Niranjan Nagarajan & Mihai Pop, 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-11, April.
    2. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    3. Dray, Stéphane & Dufour, Anne-Béatrice, 2007. "The ade4 Package: Implementing the Duality Diagram for Ecologists," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i04).
    4. Allison L. Hicks & Kerry Jo Lee & Mara Couto-Rodriguez & Juber Patel & Rohini Sinha & Cheng Guo & Sarah H. Olson & Anton Seimon & Tracie A. Seimon & Alain U. Ondzie & William B. Karesh & Patricia Reed, 2018. "Gut microbiomes of wild great apes fluctuate seasonally in response to diet," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    3. Liesbeth François & Katrien Wijnrocx & Frédéric G Colinet & Nicolas Gengler & Bettine Hulsegge & Jack J Windig & Nadine Buys & Steven Janssens, 2017. "Genomics of a revived breed: Case study of the Belgian campine cattle," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    4. Allison G. White & George S. Watts & Zhenqiang Lu & Maria M. Meza-Montenegro & Eric A. Lutz & Philip Harber & Jefferey L. Burgess, 2014. "Environmental Arsenic Exposure and Microbiota in Induced Sputum," IJERPH, MDPI, vol. 11(2), pages 1-15, February.
    5. Calenge, Clément, 2007. "Exploring Habitat Selection by Wildlife with adehabitat," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i06).
    6. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    7. Catharine Prussing & Kevin J Emerson & Sara A Bickersmith & Maria Anice Mureb Sallum & Jan E Conn, 2019. "Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    8. Anna Favati & Josefina Zidar & Hanne Thorpe & Per Jensen & Hanne Løvlie, 2016. "The ontogeny of personality traits in the red junglefowl, Gallus gallus," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(2), pages 484-493.
    9. repec:jss:jstsof:22:i01 is not listed on IDEAS
    10. Yong Li & Jiejie Zhang & Jianqiang Zhang & Wenlai Xu & Zishen Mou, 2019. "Microbial Community Structure in the Sediments and Its Relation to Environmental Factors in Eutrophicated Sancha Lake," IJERPH, MDPI, vol. 16(11), pages 1-15, May.
    11. Alessandro Bellino & Daniela Baldantoni & Vittoria Milano & Lucia Santorufo & Jérôme Cortet & Giulia Maisto, 2021. "Spatial Patterns and Scales of Collembola Taxonomic and Functional Diversity in Urban Parks," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    12. Keith Hunley & Kiela Gwin & Brendan Liberman, 2016. "A Reassessment of the Impact of European Contact on the Structure of Native American Genetic Diversity," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    13. Paul J McMurdie & Susan Holmes, 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-12, April.
    14. Jean-Pierre Rossi & Maxime Nardin & Martin Godefroid & Manuela Ruiz-Diaz & Anne-Sophie Sergent & Alejandro Martinez-Meier & Luc Pâques & Philippe Rozenberg, 2014. "Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    15. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    16. repec:jss:jstsof:34:i10 is not listed on IDEAS
    17. J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    18. Buhmann, Anne K. & Waller, Uwe & Wecker, Bert & Papenbrock, Jutta, 2015. "Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water," Agricultural Water Management, Elsevier, vol. 149(C), pages 102-114.
    19. Raphaëlle Momal & Stéphane Robin & Christophe Ambroise, 2021. "Accounting for missing actors in interaction network inference from abundance data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1230-1258, November.
    20. Bin Wang, 2020. "A Zipf-plot based normalization method for high-throughput RNA-seq data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
    21. Hongjian Wei & Yongqi Wang & Juming Zhang & Liangfa Ge & Tianzeng Liu, 2022. "Changes in Soil Bacterial Community Structure in Bermudagrass Turf under Short-Term Traffic Stress," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    22. Angélica Ochoa-Beltrán & Johanna Andrea Martínez-Villa & Peter G. Kennedy & Beatriz Salgado-Negret & Alvaro Duque, 2021. "Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombia," Land, MDPI, vol. 10(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4160-:d:360361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.