IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4021-d358019.html
   My bibliography  Save this article

Blockchain of Carbon Trading for UN Sustainable Development Goals

Author

Listed:
  • Seong-Kyu Kim

    (Department of Information Technology, Sungkyunkwan University, Seoul 03063, Korea)

  • Jun-Ho Huh

    (Department of Data Informatics, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

Carbon credits should reduce the environmental pollution and carbon emission of the Earth in the future. The market for carbon credits will become a critical issue from 2021, and carbon credits will be applied to systems where individuals can trade. In order for these carbon credits to be traded between individuals, however, a corresponding exchange of carbon credits is needed. Policies, strategies, and technologies are also necessary to measure the trading of carbon credits. This paper aims at making transactions more reliable by applying blockchain technology to measure carbon emission rights. It uses blockchain to verify carbon emissions rights among the UN-SDGs’ (United Nations Sustainable Development Goals’) 17 tasks. In addition, it introduces the necessary dApp. In fact, we can protect against carbon emissions anomalies by using big data and artificial intelligence in mobile cloud environments. Thus, this paper proposes a blockchain-based carbon emission rights verification system to learn proven data further by using the governance system analysis and blockchain mainnet engine to solve these problems.

Suggested Citation

  • Seong-Kyu Kim & Jun-Ho Huh, 2020. "Blockchain of Carbon Trading for UN Sustainable Development Goals," Sustainability, MDPI, vol. 12(10), pages 1-32, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4021-:d:358019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maarten Hajer & Måns Nilsson & Kate Raworth & Peter Bakker & Frans Berkhout & Yvo De Boer & Johan Rockström & Kathrin Ludwig & Marcel Kok, 2015. "Beyond Cockpit-ism: Four Insights to Enhance the Transformative Potential of the Sustainable Development Goals," Sustainability, MDPI, vol. 7(2), pages 1-10, February.
    2. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    3. Ting-Chia Ou, 2018. "Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy," Energies, MDPI, vol. 11(3), pages 1-10, February.
    4. Kshetri, Nir, 2017. "Blockchain's roles in strengthening cybersecurity and protecting privacy," Telecommunications Policy, Elsevier, vol. 41(10), pages 1027-1038.
    5. Gobinda Chowdhury & Kushwanth Koya, 2017. "Information practices for sustainability: Role of iSchools in achieving the UN sustainable development goals (SDGs)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(9), pages 2128-2138, September.
    6. Måns Nilsson & Dave Griggs & Martin Visbeck, 2016. "Policy: Map the interactions between Sustainable Development Goals," Nature, Nature, vol. 534(7607), pages 320-322, June.
    7. Gemma Burford & Elona Hoover & Ismael Velasco & Svatava Janoušková & Alicia Jimenez & Georgia Piggot & Dimity Podger & Marie K. Harder, 2013. "Bringing the “Missing Pillar” into Sustainable Development Goals: Towards Intersubjective Values-Based Indicators," Sustainability, MDPI, vol. 5(7), pages 1-25, July.
    8. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    9. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    10. Seong-Kyu Kim & Ung-Mo Kim & Jun-Ho Huh, 2019. "A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security," Energies, MDPI, vol. 12(3), pages 1-29, January.
    11. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    12. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    13. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    14. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurence L. Delina & Rainbow Yi Hung Lam & Wing Shun Tang & Ka Ying Wong, 2023. "Mapping the actor landscape of a future fintech-funded renewable energy ecosystem in Hong Kong," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 419-427, September.
    2. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    3. Changping Zhao & Juanjuan Sun & Yu Gong & Zhi Li & Peter Zhou, 2022. "Research on the Blue Carbon Trading Market System under Blockchain Technology," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Rahel Mandaroux & Chuanwen Dong & Guodong Li, 2021. "A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Arsenii Vilkov & Gang Tian, 2023. "Blockchain’s Scope and Purpose in Carbon Markets: A Systematic Literature Review," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    6. Adele Parmentola & Antonella Petrillo & Ilaria Tutore & Fabio De Felice, 2022. "Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs)," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 194-217, January.
    7. Angélica Pigola & Priscila Rezende da Costa & Luísa Cagica Carvalho & Luciano Ferreira da Silva & Cláudia Terezinha Kniess & Emerson Antonio Maccari, 2021. "Artificial Intelligence-Driven Digital Technologies to the Implementation of the Sustainable Development Goals: A Perspective from Brazil and Portugal," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    8. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Naif Al Azmi & Ghaleb Sweis & Rateb Sweis & Farouq Sammour, 2022. "Exploring Implementation of Blockchain for the Supply Chain Resilience and Sustainability of the Construction Industry in Saudi Arabia," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    2. Gyula Dörgő & Viktor Sebestyén & János Abonyi, 2018. "Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    3. Jan Anton van Zanten & Rob van Tulder, 2021. "Improving companies' impacts on sustainable development: A nexus approach to the SDGS," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3703-3720, December.
    4. Garg, Poonam & Gupta, Bhumika & Chauhan, Ajay Kumar & Sivarajah, Uthayasankar & Gupta, Shivam & Modgil, Sachin, 2021. "Measuring the perceived benefits of implementing blockchain technology in the banking sector," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Oana Forestier & Rakhyun E. Kim, 2020. "Cherry‐picking the Sustainable Development Goals: Goal prioritization by national governments and implications for global governance," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1269-1278, September.
    6. Perrons, Robert K. & Cosby, Tonya, 2020. "Applying blockchain in the geoenergy domain: The road to interoperability and standards," Applied Energy, Elsevier, vol. 262(C).
    7. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    8. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    9. Rositsa T. Ilieva, 2017. "Urban Food Systems Strategies: A Promising Tool for Implementing the SDGs in Practice †," Sustainability, MDPI, vol. 9(10), pages 1-35, September.
    10. Oier Imaz & Andoni Eizagirre, 2020. "Responsible Innovation for Sustainable Development Goals in Business: An Agenda for Cooperative Firms," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    11. Jan Anton van Zanten & Rob van Tulder, 2020. "Beyond COVID-19: Applying “SDG logics” for resilient transformations," Journal of International Business Policy, Palgrave Macmillan, vol. 3(4), pages 451-464, December.
    12. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    13. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    14. Myriam Pham‐Truffert & Florence Metz & Manuel Fischer & Henri Rueff & Peter Messerli, 2020. "Interactions among Sustainable Development Goals: Knowledge for identifying multipliers and virtuous cycles," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1236-1250, September.
    15. Lena Partzsch, 2023. "Missing the SDGs: Political accountability for insufficient environmental action," Global Policy, London School of Economics and Political Science, vol. 14(3), pages 438-450, June.
    16. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    17. Judith M. Ament & Robin Freeman & Chris Carbone & Anna Vassall & Charlotte Watts, 2020. "An Empirical Analysis of Synergies and Tradeoffs between Sustainable Development Goals," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    18. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    19. Keith R. Skene, 2021. "No goal is an island: the implications of systems theory for the Sustainable Development Goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9993-10012, July.
    20. Tulin Dzhengiz, 2020. "A Literature Review of Inter-Organizational Sustainability Learning," Sustainability, MDPI, vol. 12(12), pages 1-52, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4021-:d:358019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.