IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p198-d301894.html
   My bibliography  Save this article

Time Reliability of the Maritime Transportation Network for China’s Crude Oil Imports

Author

Listed:
  • Shuang Wang

    (College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China)

  • Jing Lu

    (College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China)

  • Liping Jiang

    (Department of Operations Management, Copenhagen Business School, 2000 Frederiksberg, Denmark)

Abstract

To evaluate the transportation time reliability of the maritime transportation network for China’s crude oil imports under node capacity variations resulting from extreme events, a framework incorporating bi-level programming and a Monte Carlo simulation is proposed in this paper. Under this framework, the imported crude oil volume from each source country is considered to be a decision variable, and may change in correspondence to node capacity variations. The evaluation results illustrate that when strait or canal nodes were subject to capacity variations, the network transportation time reliability was relatively low. Conversely, the transportation time reliability was relatively high when port nodes were under capacity variations. In addition, the Taiwan Strait, the Strait of Hormuz, and the Strait of Malacca were identified as vulnerable nodes according to the transportation time reliability results. These results can assist government decision-makers and tanker company strategic planners to better plan crude oil import and transportation strategies.

Suggested Citation

  • Shuang Wang & Jing Lu & Liping Jiang, 2019. "Time Reliability of the Maritime Transportation Network for China’s Crude Oil Imports," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:198-:d:301894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    2. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    3. Xiangdong Xu & Anthony Chen & Lin Cheng, 2013. "Assessing the effects of stochastic perception error under travel time variability," Transportation, Springer, vol. 40(3), pages 525-548, May.
    4. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    5. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    6. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Lo, Hong K., 2014. "Modeling distribution tail in network performance assessment: A mean-excess total travel time risk measure and analytical estimation method," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 32-49.
    7. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    8. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    9. Yu, Shunan & Yang, Zhongzhen & Yu, Bin, 2017. "Air express network design based on express path choices – Chinese case study," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 73-80.
    10. Jasmine S. L. Lam & Wei Yim Yap & Kevin Cullinane, 2007. "Structure, conduct and performance on the major liner shipping routes 1," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(4), pages 359-381, August.
    11. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    12. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    13. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    14. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    15. Bell, Michael G. H. & Cassir, Chris, 2002. "Risk-averse user equilibrium traffic assignment: an application of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 671-681, September.
    16. Recker, Will & Chung, Younshik & Park, Jiyoung & Wang, Lesley & Chen, Anthony & Ji, Zhaowang & Liu, Henry & Horrocks, Matthew & Oh, Jun-Seok, 2005. "Considering Risk-Taking Behavior in Travel Time Reliability," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt59v844cr, Institute of Transportation Studies, UC Berkeley.
    17. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, I: Theoretical Foundation," Transportation Science, INFORMS, vol. 36(2), pages 149-166, May.
    18. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    2. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    3. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    4. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    5. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    6. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    7. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    8. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    9. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    10. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    11. Nakayama, Shoichiro & Watling, David, 2014. "Consistent formulation of network equilibrium with stochastic flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 50-69.
    12. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    13. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    14. Uchida, Kenetsu, 2014. "Estimating the value of travel time and of travel time reliability in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 129-147.
    15. Xiangdong Xu & Anthony Chen & Lin Cheng, 2013. "Assessing the effects of stochastic perception error under travel time variability," Transportation, Springer, vol. 40(3), pages 525-548, May.
    16. Liang Shen & Feiran Wang & Yueyuan Chen & Xinyi Lv & Zongliang Wen, 2022. "A Reliability-Based Stochastic Traffic Assignment Model for Signalized Traffic Network with Consideration of Link Travel Time Correlations," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    17. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    18. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    19. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    20. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:198-:d:301894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.