Advanced Search
MyIDEAS: Login to save this article or follow this journal

Distribution-free travel time reliability assessment with probability inequalities

Contents:

Author Info

  • Ng, ManWo
  • Szeto, W.Y.
  • Travis Waller, S.
Registered author(s):

    Abstract

    An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511000348
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 45 (2011)
    Issue (Month): 6 (July)
    Pages: 852-866

    as in new window
    Handle: RePEc:eee:transb:v:45:y:2011:i:6:p:852-866

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    Related research

    Keywords: Uncertainty Travel time reliability Probability inequality Bounds Independence Moments;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. W. Szeto & L. O'Brien & M. O'Mahony, 2006. "Risk-Averse Traffic Assignment with Elastic Demands: NCP Formulation and Solution Method for Assessing Performance Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 313-332, September.
    2. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    3. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    4. S. Illeris & G. Akehurst, 2002. "Introduction," The Service Industries Journal, Taylor & Francis Journals, vol. 22(1), pages 1-3, January.
    5. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    6. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    7. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    8. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    9. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    10. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    2. Ng, ManWo & Khattak, Asad & Talley, Wayne K., 2013. "Modeling the time to the next primary and secondary incident: A semi-Markov stochastic process approach," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 44-57.
    3. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    4. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:6:p:852-866. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.