IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2174-d221937.html
   My bibliography  Save this article

Environmental Optimization of Precast Concrete Beams Using Fibre Reinforced Polymers

Author

Listed:
  • R. R. L. (Rick) van Loon

    (Eindhoven University of Technology, Eindhoven, The Netherlands)

  • Ester Pujadas-Gispert

    (Eindhoven University of Technology, Eindhoven, The Netherlands)

  • S. P. G. (Faas) Moonen

    (Eindhoven University of Technology, Eindhoven, The Netherlands)

  • Rijk Blok

    (Eindhoven University of Technology, Eindhoven, The Netherlands)

Abstract

Increasing importance is being attached to materials in the life-cycle of a building. In the Netherlands, material life-cycle assessments (LCA) are now mandatory for almost all new buildings, on which basis the building is then awarded a building environmental performance or MPG [Milieuprestatie Gebouwen] score. The objective of this study is to reduce the environmental–economic (shadow) costs of precast reinforced concrete (RC) beams in a conventional Dutch office building, thereby improving its MPG score. Two main optimizations are introduced: first, the amount of concrete is reduced, designing a cavity in the cross-section of the beam; second, part of the reinforcement is replaced with a fibre reinforced polymer (FRP) tube. The structural calculations draw from a combination of several codes and FRP recommendations. Hollow FRP-RC beams (with an elongated oval cavity), and flax, glass, and kenaf fibre tubes yielded the lowest shadow costs. In particular, the flax tube obtained shadow costs that were 39% lower than those of the hollow RC beam (with an elongated oval cavity); which also contributed to decreasing the shadow costs of other building components (e.g., facade), thereby reducing the MPG score of the building. However, this study also shows that it is important to select the right type of FRP as hemp fibre tubes resulted in a 98% increase in shadow costs.

Suggested Citation

  • R. R. L. (Rick) van Loon & Ester Pujadas-Gispert & S. P. G. (Faas) Moonen & Rijk Blok, 2019. "Environmental Optimization of Precast Concrete Beams Using Fibre Reinforced Polymers," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2174-:d:221937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria La Gennusa & Pere Llorach-Massana & Juan Ignacio Montero & Francisco Javier Peña & Joan Rieradevall & Patrizia Ferrante & Gianluca Scaccianoce & Giancarlo Sorrentino, 2017. "Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    2. Yelin Deng & Yajun Tian, 2015. "Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    3. Abd Rashid, Ahmad Faiz & Yusoff, Sumiani, 2015. "A review of life cycle assessment method for building industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 244-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ester Pujadas-Gispert & Joost G. Vogtländer & S. P. G. (Faas) Moonen, 2021. "Environmental and Economic Optimization of a Conventional Concrete Building Foundation: Selecting the Best of 28 Alternatives by Applying the Pareto Front," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. G. Mahdavi & K. Nasrollahzadeh & M. A. Hariri-Ardebili, 2019. "Optimal FRP Jacket Placement in RC Frame Structures Towards a Resilient Seismic Design," Sustainability, MDPI, vol. 11(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    3. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    4. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    5. Jianxiong Chen & Chung-Cheng Yang, 2021. "Competitive Revenue Strategies in the Medical Consumables Industry: Evidence from Human Resources, Research and Development Expenses and Industry Life Cycle," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    6. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    7. Nicole Bamber & Ian Turner & Baishali Dutta & Mohammed Davoud Heidari & Nathan Pelletier, 2023. "Consequential Life Cycle Assessment of Grain and Oilseed Crops: Review and Recommendations," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    8. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    9. Ahmad Faiz Abd Rashid & Juferi Idris & Sumiani Yusoff, 2017. "Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment," Sustainability, MDPI, vol. 9(3), pages 1-15, February.
    10. Mateus, Ricardo & Silva, Sandra Monteiro & de Almeida, Manuela Guedes, 2019. "Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings," Renewable Energy, Elsevier, vol. 137(C), pages 82-92.
    11. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    12. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    14. Gianfranco Rizzo & Laura Cirrincione & Maria La Gennusa & Giorgia Peri & Gianluca Scaccianoce, 2023. "Green Roofs’ End of Life: A Literature Review," Energies, MDPI, vol. 16(2), pages 1-16, January.
    15. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    16. Roberto Aguado & Francesc Xavier Espinach & Fabiola Vilaseca & Quim Tarrés & Pere Mutjé & Marc Delgado-Aguilar, 2022. "Approaching a Zero-Waste Strategy in Rapeseed ( Brassica napus ) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    17. Ajabli, Houda & Zoubir, Amine & Elotmani, Rabie & Louzazni, Mohamed & Kandoussi, Khalid & Daya, Abdelmajid, 2023. "Review on Eco-friendly insulation material used for indoor comfort in building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    18. Song, Qingbin & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Wang, Zhishi, 2017. "Towards to sustainable energy-efficient city: A case study of Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 504-514.
    19. Franz Segovia & Pierre Blanchet & Ben Amor & Costel Barbuta & Robert Beauregard, 2019. "Life Cycle Assessment Contribution in the Product Development Process: Case Study of Wood Aluminum-Laminated Panel," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    20. Fernando E. Garcia-Muiña & Rocío González-Sánchez & Anna Maria Ferrari & Davide Settembre-Blundo, 2018. "The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company," Social Sciences, MDPI, vol. 7(12), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2174-:d:221937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.