IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6596-d289808.html
   My bibliography  Save this article

A Methodology for Buildings Access to Solar Radiation in Sustainable Cities

Author

Listed:
  • L. M. Fernández-Ahumada

    (Department of Computing and Numeric Analysis, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain)

  • J. Ramírez-Faz

    (Department of Electrical Engineering, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain)

  • R. López-Luque

    (Department of Applied Physics, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain)

  • A. Márquez-García

    (Research Group of Physics for Renewable Energies, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain)

  • M. Varo-Martínez

    (Department of Applied Physics, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain)

Abstract

The growing need to improve the environmental and energy sustainability of buildings involves the use of solar radiation incident on their surfaces. However, in cities, this task is complicated due to the constructive geometry that leads to shading between buildings. In this context, this work presents a study of solar access to the façades of buildings in cities. The methodology is based on the determination of the incident annual solar radiation in 121 significant points of each façade considering the twelve representative days of the year. To characterize the influence of the different city typologies on solar access, the urban solar coefficient is proposed. A study of two neighborhoods in Cordoba (Spain) with different urban settings have been analyzed. Specifically, two typologies of neighborhoods have been compared: one with “L-shaped” and “U-shaped blocks” and another with “Grouped blocks”. For both of them, the Urban Solar Coefficient has been calculated, obtaining a higher mean value for the neighborhood with “L-shaped” and “U-shaped blocks” (0.317) than for the one with “Grouped blocks” (0.260). Accordingly, the results show that urban morphology can influence the Urban Solar Coefficient and solar access. Finally, a regression model for each neighborhood has been obtained in order to determine the dependence of the Urban Solar Coefficient on neighborhood geometry factors.

Suggested Citation

  • L. M. Fernández-Ahumada & J. Ramírez-Faz & R. López-Luque & A. Márquez-García & M. Varo-Martínez, 2019. "A Methodology for Buildings Access to Solar Radiation in Sustainable Cities," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6596-:d:289808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Drif, M. & Pérez, P.J. & Aguilera, J. & Aguilar, J.D., 2008. "A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 33(9), pages 2048-2056.
    3. Mimica R. Milošević & Dušan M. Milošević & Dragan M. Stević & Ana D. Stanojević, 2019. "Smart City: Modeling Key Indicators in Serbia Using IT2FS," Sustainability, MDPI, vol. 11(13), pages 1-28, June.
    4. Brito, M.C. & Freitas, S. & Guimarães, S. & Catita, C. & Redweik, P., 2017. "The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data," Renewable Energy, Elsevier, vol. 111(C), pages 85-94.
    5. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    6. Axel Lindfors & Roozbeh Feiz & Mats Eklund & Jonas Ammenberg, 2019. "Assessing the Potential, Performance and Feasibility of Urban Solutions: Methodological Considerations and Learnings from Biogas Solutions," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    7. Ramírez-Faz, J. & López-Luque, R. & Casares, F.J., 2015. "Development of synthetic hemispheric projections suitable for assessing the sky view factor on vertical planes," Renewable Energy, Elsevier, vol. 74(C), pages 279-286.
    8. Mokhinabonu Mardonova & Yosoon Choi, 2019. "Assessment of Photovoltaic Potential of Mining Sites in Uzbekistan," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    9. Anderson Diogo Spacek & João Mota Neto & Luciano Dagostin Biléssimo & Oswaldo Hideo Ando Junior & Gustavo Pedro De Freitas Neto & Rodrigo Da Silva Giansella & Marcus Vinícius Ferreira De Santana & Cel, 2017. "Proposal for an Experimental Methodology for Evaluation of Natural Lighting Systems Applied in Buildings," Energies, MDPI, vol. 10(7), pages 1-12, July.
    10. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    11. Alzoubi, Hussain H. & Alshboul, Abdulsalam A., 2010. "Low energy architecture and solar rights: Restructuring urban regulations, view from Jordan," Renewable Energy, Elsevier, vol. 35(2), pages 333-342.
    12. Helena Sandman & Jarkko Levänen & Nina Savela, 2018. "Using Empathic Design as a Tool for Urban Sustainability in Low-Resource Settings," Sustainability, MDPI, vol. 10(7), pages 1-24, July.
    13. La Gennusa, Maria & Lascari, Giovanni & Rizzo, Gianfranco & Scaccianoce, Gianluca & Sorrentino, Giancarlo, 2011. "A model for predicting the potential diffusion of solar energy systems in complex urban environments," Energy Policy, Elsevier, vol. 39(9), pages 5335-5343, September.
    14. Belakehal, A & Tabet Aoul, K & Bennadji, A, 2004. "Sunlighting and daylighting strategies in the traditional urban spaces and buildings of the hot arid regions," Renewable Energy, Elsevier, vol. 29(5), pages 687-702.
    15. Alamdari, Pouria & Nematollahi, Omid & Alemrajabi, Ali Akbar, 2013. "Solar energy potentials in Iran: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 778-788.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.
    2. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    3. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    4. Firozjaei, Mohammad Karimi & Nematollahi, Omid & Mijani, Naeim & Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Toomanian, Ara, 2019. "An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning," Renewable Energy, Elsevier, vol. 136(C), pages 1130-1146.
    5. Jamali, Mohammad-Bagher & Rasti-Barzoki, Morteza, 2022. "A game-theoretic approach for examining government support strategies and licensing contracts in an electricity supply chain with technology spillover: A case study of Iran," Energy, Elsevier, vol. 242(C).
    6. Gaylan Rasul Faqe Ibrahim & Arieann Ali Hamid & Umkalthum Mustafa Darwesh & Azad Rasul, 2021. "A GIS-based Boolean logic-analytical hierarchy process for solar power plant (case study: Erbil Governorate—Iraq)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6066-6083, April.
    7. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    8. Ramírez-Faz, J. & López-Luque, R., 2012. "Development of a methodology for quantifying insolation variables in windows and building openings," Renewable Energy, Elsevier, vol. 37(1), pages 426-433.
    9. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    10. María-Eugenia Polo & Mar Pozo & Elia Quirós, 2018. "Circular Statistics Applied to the Study of the Solar Radiation Potential of Rooftops in a Medium-Sized City," Energies, MDPI, vol. 11(10), pages 1-16, October.
    11. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    13. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    14. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    15. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    16. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    17. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    18. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    19. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    20. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6596-:d:289808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.