IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3286-d169831.html
   My bibliography  Save this article

Effects of Field Inoculation with VAM and Bacteria Consortia on Root Growth and Nutrients Uptake in Common Wheat

Author

Listed:
  • Cristian Dal Cortivo

    (Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, 35020 Legnaro-Padua, Italy)

  • Giuseppe Barion

    (Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, 35020 Legnaro-Padua, Italy)

  • Manuel Ferrari

    (Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, 35020 Legnaro-Padua, Italy)

  • Giovanna Visioli

    (Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy)

  • Lucia Dramis

    (Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy)

  • Anna Panozzo

    (Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, 35020 Legnaro-Padua, Italy)

  • Teofilo Vamerali

    (Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, 35020 Legnaro-Padua, Italy)

Abstract

This study investigated the effects of a commercial biofertilizer containing the mycorrhizal fungus Rhizophagus irregularis and the diazotrophic N-fixing bacterium Azotobacter vinelandii on root and shoot growth, yield, and nutrient uptake in common wheat ( Triticum aestivum L.) in order to improve the sustainable cultivation of this widespread crop. The trials were carried out in controlled conditions (rhizoboxes) and in open fields over two years to investigate the interaction between inoculation and three doses of nitrogen fertilization (160, 120 and 80 kg ha −1 ) in a silty-loam soil of the Po Plain (NE Italy). In rhizoboxes, efficient root colonization by R. irregularis was observed at 50 days after sowing with seed inoculation, together with improved root tip density and branching (+~30% vs. controls), while the effects of post-emergence inoculation by soil and foliar spraying were not observable at plant sampling. In the open, field spraying at end tillering significantly increased the volumetric root length density (RLD, +22% vs. controls) and root area density (+18%) after about two months (flowering stage) in both years under medium and high N fertilization doses, but not at the lowest N dose. In absence of inoculation, RLD progressively decreased with increased N doses. Inoculation had a negligible effect on grain yield and N uptake, which followed a typical N dose-response model, while straw Zn, P, and K concentrations were seldom improved. It is concluded that medium-high N fertilization doses are required to achieve the target yield and standards of quality (protein contents) in wheat cultivation, while the use of this mixed VAM-PGPR biofertilizer appears to be a sustainable mean for minimizing the adverse effects of chemical N fertilizers on root expansion and for improving the uptake of low-mobility nutrients, which has potentially relevant environmental benefits.

Suggested Citation

  • Cristian Dal Cortivo & Giuseppe Barion & Manuel Ferrari & Giovanna Visioli & Lucia Dramis & Anna Panozzo & Teofilo Vamerali, 2018. "Effects of Field Inoculation with VAM and Bacteria Consortia on Root Growth and Nutrients Uptake in Common Wheat," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3286-:d:169831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    2. Emma Marris, 2008. "Agronomy: Five crop researchers who could change the world," Nature, Nature, vol. 456(7222), pages 563-568, December.
    3. Unknown, 2009. "Wheat Facts and Futures 2009," Facts and Trends/Overview and Outlook 56366, CIMMYT: International Maize and Wheat Improvement Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengjia Tan & Mohammad Talib Kalhoro & Yahya Faqir & Jiahua Ma & Matthew Duah Osei & Ghulam Khaliq, 2022. "Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture," Sustainability, MDPI, vol. 14(9), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gawhara A. El-Sorady & Aly A. A. El-Banna & Ahmed M. Abdelghany & Ehab A. A. Salama & Hayssam M. Ali & Manzer H. Siddiqui & Nafiu Garba Hayatu & Lidia Sas Paszt & Sobhi F. Lamlom, 2022. "Response of Bread Wheat Cultivars Inoculated with Azotobacter Species under Different Nitrogen Application Rates," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    3. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    4. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    5. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    8. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    9. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    10. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    11. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    12. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    13. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    14. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    15. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    16. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    17. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    18. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    19. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    20. Simon R. Swaffield & Robert C. Corry & Paul Opdam & Wendy McWilliam & Jørgen Primdahl, 2019. "Connecting business with the agricultural landscape: business strategies for sustainable rural development," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1357-1369, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3286-:d:169831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.