IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3087-d166583.html
   My bibliography  Save this article

Temporal and Spatial Distributions of Ecological Vulnerability under the Influence of Natural and Anthropogenic Factors in an Eco-Province under Construction in China

Author

Listed:
  • Qian Ding

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Xun Shi

    (Department of Geography, Dartmouth College, Hanover, NH 03755, USA
    These authors contributed equally to this work.)

  • Dafang Zhuang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Yong Wang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Department of Geography, Dartmouth College, Hanover, NH 03755, USA)

Abstract

Ecological vulnerability evaluations can provide a scientific foundation for ecological environment management. Studies of ecological vulnerability have mainly focused on typical ecologically vulnerable regions with poor natural conditions or severe human interference, and such studies have rarely considered eco-provinces. Taking Jiangsu, an eco-province under construction in China, as the study area, we evaluated the spatiotemporal distributions of ecological vulnerability in 2005, 2010 and 2015 at the kilometer grid scale and analyzed the effects of natural and anthropogenic factors on ecological vulnerability. The pressure state response model (PSR), geographic information systems (GIS), spatial principal component analysis, spatial autocorrelation analysis, and correlation analysis methods were used. The results of the study are as follows: (i) the effects of anthropogenic factors on ecological vulnerability are greater than those of natural factors, and landscape evenness and the land resource utilization degree are the main factors that influence ecological vulnerability. (ii) Jiangsu Province is generally lightly to moderately vulnerable. Slight vulnerability is mainly observed in areas with water bodies. Light vulnerability is concentrated in paddy fields between the Main Irrigation Channel of North Jiangsu and the Yangtze River. Medium, heavy and extreme vulnerability areas are mainly composed of arable and built-up land. Medium vulnerability is mainly distributed to the north of the Main Irrigation Channel of North Jiangsu; heavy vulnerability is scattered to the south of the Yangtze River and in north-western hilly areas; and extreme vulnerability is concentrated in hilly areas; (iii) Ecological vulnerability displays a clustering characteristic. High-high (HH) regions are mainly distributed in heavy and extreme vulnerability regions, and low-low (LL) regions are located in slight vulnerability areas. (iv) Ecological vulnerability has gradually deteriorated. From 2005 to 2010, the vulnerability in hilly areas considerably increased, and from 2010 to 2015, the vulnerability in urban and north-eastern coastal built-up land areas significantly increased. Emphasis should be placed on the prevention and control of ecological vulnerability in high-altitude, urban and coastal areas.

Suggested Citation

  • Qian Ding & Xun Shi & Dafang Zhuang & Yong Wang, 2018. "Temporal and Spatial Distributions of Ecological Vulnerability under the Influence of Natural and Anthropogenic Factors in an Eco-Province under Construction in China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3087-:d:166583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Bhuiyan & Dushmanta Dutta, 2012. "Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 729-743, March.
    2. V. Martins & Delta Silva & Pedro Cabral, 2012. "Social vulnerability assessment to seismic risk using multicriteria analysis: the case study of Vila Franca do Campo (São Miguel Island, Azores, Portugal)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 385-404, June.
    3. Xiaorui Zhang & Zhenbo Wang & Jing Lin, 2015. "GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengyuan Zhao & Yunlong Zhang & Siqi Sun & Ting Li & Yihe Lü & Wei Jiang & Xing Wu, 2022. "Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    2. Rong Li & Rui Han & Qianru Yu & Shuang Qi & Luo Guo, 2020. "Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    3. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    4. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    5. Han Li & Wei Song, 2021. "Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau," IJERPH, MDPI, vol. 18(12), pages 1-21, June.
    6. Yue Chen & Kangning Xiong & Xiaodong Ren & Cai Cheng, 2021. "Vulnerability Comparison between Karst and Non-Karst Nature Reserves—With a Special Reference to Guizhou Province, China," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    7. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    8. Dong Li & Chongyang Huan & Jun Yang & Hanlong Gu, 2022. "Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China," Land, MDPI, vol. 11(7), pages 1-25, July.
    9. Hongjie Peng & Lei Hua & Xuesong Zhang & Xuying Yuan & Jianhao Li, 2021. "Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    10. Evangelia E. Golia & Sotiria G. Papadimou & Christos Cavalaris & Nikolaos G. Tsiropoulos, 2021. "Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece)," Sustainability, MDPI, vol. 13(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    2. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    3. Seunghoo Jeong & Byeong Je Kim & Young‐Joo Lee & Ji‐Bum Chung & Sung‐Han Sim, 2020. "Individual Disaster Assistance For Socially Vulnerable People: Lessons Learned From the Pohang Earthquake in the Republic of Korea," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2373-2389, November.
    4. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    5. Razvan Serbu & Bogdan Marza & Sorin Borza, 2016. "A Spatial Analytic Hierarchy Process for Identification of Water Pollution with GIS Software in an Eco-Economy Environment," Sustainability, MDPI, vol. 8(11), pages 1-25, November.
    6. Eleonora Giovene di Girasole & Daniele Cannatella, 2017. "Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic)," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    7. Thiede, Brian C. & Chen, Joyce & Mueller, Valerie & Jia, Yuanyuan & Hultquist, Carolynne, 2020. "It’s Raining Babies? Flooding and Fertility Choices in Bangladesh," SocArXiv cz482, Center for Open Science.
    8. Zhengsong Lin & Xinyue Ye & Qian Wei & Fan Xin & Zhang Lu & Sonali Kudva & Qiwen Dai, 2017. "Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    9. J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
    10. Firozjaei, Mohammad Karimi & Nematollahi, Omid & Mijani, Naeim & Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Toomanian, Ara, 2019. "An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning," Renewable Energy, Elsevier, vol. 136(C), pages 1130-1146.
    11. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    12. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    13. Ali Aghazadeh Ardebili & Elio Padoano, 2020. "A Literature Review of the Concepts of Resilience and Sustainability in Group Decision-Making," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    14. Mar Llorente-Marrón & Montserrat Díaz-Fernández & Paz Méndez-Rodríguez & Rosario González Arias, 2020. "Social Vulnerability, Gender and Disasters. The Case of Haiti in 2010," Sustainability, MDPI, vol. 12(9), pages 1-21, April.
    15. Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.
    16. Alexandru Banica & Lucian Rosu & Ionel Muntele & Adrian Grozavu, 2017. "Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania)," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    17. Saini Yang & Shuai He & Juan Du & Xiaohua Sun, 2015. "Screening of social vulnerability to natural hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 1-18, March.
    18. Xiaorui Zhang & Zhenbo Wang & Jing Lin, 2015. "GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    19. Catherine Ticehurst & Dushmanta Dutta & Fazlul Karim & Cuan Petheram & Juan Guerschman, 2015. "Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 803-820, September.
    20. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3087-:d:166583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.