IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8490-d604264.html
   My bibliography  Save this article

Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China

Author

Listed:
  • Hongjie Peng

    (Department of Geographic Information Science, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation, Wuhan 430079, China)

  • Lei Hua

    (Department of Public Service Management, School of Public Affairs, Chongqing University, Chongqing 400044, China)

  • Xuesong Zhang

    (Department of Geographic Information Science, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation, Wuhan 430079, China)

  • Xuying Yuan

    (Department of Geographic Information Science, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation, Wuhan 430079, China)

  • Jianhao Li

    (Department of Geographic Information Science, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation, Wuhan 430079, China)

Abstract

In recent years, ecosystem service values (ESV) have attracted much attention. However, studies that use ecological sensitivity methods as a basis for predicting future urban expansion and thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges Reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological sensitive zone has been identified in Three Gorges Reservoir area; it accounts for about 35.86% of the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million. Jiulongpo, Banan and Shapingba had the highest ESV losses.

Suggested Citation

  • Hongjie Peng & Lei Hua & Xuesong Zhang & Xuying Yuan & Jianhao Li, 2021. "Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8490-:d:604264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    2. Zhang, Biao & Li, Wenhua & Xie, Gaodi, 2010. "Ecosystem services research in China: Progress and perspective," Ecological Economics, Elsevier, vol. 69(7), pages 1389-1395, May.
    3. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    4. Wei Ren & Xuesong Zhang & Yebo Shi, 2021. "Evaluation of Ecological Environment Effect of Villages Land Use and Cover Change: A Case Study of Some Villages in Yudian Town, Guangshui City, Hubei Province," Land, MDPI, vol. 10(3), pages 1-19, March.
    5. Wainger, Lisa A. & King, Dennis M. & Mack, Richard N. & Price, Elizabeth W. & Maslin, Thomas, 2010. "Can the concept of ecosystem services be practically applied to improve natural resource management decisions?," Ecological Economics, Elsevier, vol. 69(5), pages 978-987, March.
    6. Howarth, Richard B. & Farber, Stephen, 2002. "Accounting for the value of ecosystem services," Ecological Economics, Elsevier, vol. 41(3), pages 421-429, June.
    7. Klain, Sarah C. & Satterfield, Terre A. & Chan, Kai M.A., 2014. "What matters and why? Ecosystem services and their bundled qualities," Ecological Economics, Elsevier, vol. 107(C), pages 310-320.
    8. Qian Ding & Xun Shi & Dafang Zhuang & Yong Wang, 2018. "Temporal and Spatial Distributions of Ecological Vulnerability under the Influence of Natural and Anthropogenic Factors in an Eco-Province under Construction in China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    9. Jiangxiao Qiu & Samuel C. Zipper & Melissa Motew & Eric G. Booth & Christopher J. Kucharik & Steven P. Loheide, 2019. "Nonlinear groundwater influence on biophysical indicators of ecosystem services," Nature Sustainability, Nature, vol. 2(6), pages 475-483, June.
    10. Frank Pennekamp & Mikael Pontarp & Andrea Tabi & Florian Altermatt & Roman Alther & Yves Choffat & Emanuel A. Fronhofer & Pravin Ganesanandamoorthy & Aurélie Garnier & Jason I. Griffiths & Suzanne Gre, 2018. "Biodiversity increases and decreases ecosystem stability," Nature, Nature, vol. 563(7729), pages 109-112, November.
    11. Anaya-Romero, María & Muñoz-Rojas, Miriam & Ibáñez, Beatriz & Marañón, Teodoro, 2016. "Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain," Ecosystem Services, Elsevier, vol. 20(C), pages 82-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingtong Wan & Xueying Bao & Jianchang Zhao, 2022. "Evaluation Method and Application of Ecological Sensitivity of Intercity Railway Network Planning," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
    2. Shuo Yang & Hao Su, 2022. "Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration, China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    3. Guiyuan Li & Guo Cheng & Zhenying Wu, 2022. "Resilience Assessment of Urban Complex Giant Systems in Hubei Section of the Three Gorges Reservoir Area Based on Multi-Source Data," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    4. Kikuko Shoyama & Rajarshi Dasgupta & Ronald C. Estoque, 2022. "Ecosystem Service and Land-Use Changes in Asia: Implications for Regional Sustainability," Sustainability, MDPI, vol. 14(21), pages 1-4, November.
    5. Sujith S. Ratnayake & Azeem Khan & Michael Reid & Punchi B. Dharmasena & Danny Hunter & Lalit Kumar & Keminda Herath & Benjamin Kogo & Harsha K. Kadupitiya & Thilantha Dammalage & Champika S. Kariyawa, 2022. "Land Use-Based Participatory Assessment of Ecosystem Services for Ecological Restoration in Village Tank Cascade Systems of Sri Lanka," Sustainability, MDPI, vol. 14(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Gaodi & Zhang, Caixia & Zhen, Lin & Zhang, Leiming, 2017. "Dynamic changes in the value of China’s ecosystem services," Ecosystem Services, Elsevier, vol. 26(PA), pages 146-154.
    2. Zhiyin Wang & Jiansheng Cao & Chunyu Zhu & Hui Yang, 2020. "The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    3. Ming Lu & Yan Zhang & Fan Liang & Yuanxiang Wu, 2022. "Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing," Land, MDPI, vol. 11(8), pages 1-19, July.
    4. Qinglan Li & Liu Yang & Hongzan Jiao & Qing He, 2024. "Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China," Land, MDPI, vol. 13(2), pages 1-19, February.
    5. Robert Costanza & Shuang Liu, 2014. "Ecosystem Services and Environmental Governance: Comparing China and the U.S," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 160-170, January.
    6. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    7. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    8. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    9. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    10. Pietrzyk-Kaszyńska, Agata & Olszańska, Agnieszka & Rechciński, Marcin & Tusznio, Joanna & Grodzińska-Jurczak, Małgorzata, 2022. "Divergent or convergent? Prioritization and spatial representation of ecosystem services as perceived by conservation professionals and local leaders," Land Use Policy, Elsevier, vol. 119(C).
    11. Ping Shen & Lijuan Wu & Ziwen Huo & Jiaying Zhang, 2023. "A Study on the Spatial Pattern of the Ecological Product Value of China’s County-Level Regions Based on GEP Evaluation," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    12. Yue Chen & Kangning Xiong & Xiaodong Ren & Cai Cheng, 2021. "Vulnerability Comparison between Karst and Non-Karst Nature Reserves—With a Special Reference to Guizhou Province, China," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    13. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    14. Tan Li & Qingguo Zhang & Ying Zhang, 2018. "Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China," IJERPH, MDPI, vol. 15(4), pages 1-20, March.
    15. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    16. Amirnejad, Hamid & Khalilian, Sadegh & Assareh, Mohammad H. & Ahmadian, Majid, 2006. "Estimating the existence value of north forests of Iran by using a contingent valuation method," Ecological Economics, Elsevier, vol. 58(4), pages 665-675, July.
    17. Xiaoyu Li & Shudan Gong & Qingdong Shi & Yuan Fang, 2023. "A Review of Ecosystem Services Based on Bibliometric Analysis: Progress, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    18. Zhang, Jing & Brown, Colin & Qiao, Guanghua & Zhang, Bao, 2019. "Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia," Ecological Economics, Elsevier, vol. 159(C), pages 46-53.
    19. Xiaozhen Zhou & Qianfeng Wang & Rongrong Zhang & Binyu Ren & Xiaoping Wu & Yue Wu & Jiakui Tang, 2022. "A Spatiotemporal Analysis of Hainan Island’s 2010–2020 Gross Ecosystem Product Accounting," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    20. Jens Abildtrup & Anne Stenger, 2022. "Report on valuation methods," Working Papers hal-04068881, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8490-:d:604264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.