IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3026-d165781.html
   My bibliography  Save this article

Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China

Author

Listed:
  • Feiyan Chen

    (School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
    School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China)

  • Aiwen Lin

    (School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China)

  • Hongji Zhu

    (School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
    College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China)

  • Jiqiang Niu

    (School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China)

Abstract

The interactions between climate change and vegetation have a significant impact on the dynamics of the global carbon cycle. Based on the observed meteorological data from 1961 to 2013 and the temperature and precipitation data simulated by various climate models (simulations phase 5 of the Climate Model Intercomparison Project dataset), this paper analyzes the temperature and precipitation changes of the Yangtze River Basin (YRB) and finds that they are a similar trend, that is, the temperature presents a significant upward trend (R 2 = 0.49, p < 0.01), and the variation trend of precipitation is not significant (R 2 = 0.01). Specifically, based on observed meteorological data, the annual mean temperature increased significantly and the area of increasing temperature accounted for 99.94% of the total region ( p < 0.05); however, there was no significant change in annual precipitation. Ecological indicators (normalized difference vegetation index (NDVI); enhanced vegetation index (EVI); leaf area index (LAI); gross primary production (GPP); and net primary production (NPP)) of the YRB showed an increasing trend, and annual NDVI, annual EVI, LAI, annual total GPP and annual total NPP increased at respective rates of 0.002 yr −1 , 0.001 yr −1 , 0.07 m 2 m −2 decade −1 , 9 TgCyr −1 yr −1 , and 6 TgCyr −1 yr −1 , respectively. Correlation analysis between temperature/precipitation and NDVI/EVI/LAI/GPP/NPP was used to determine the relationships between climatic parameters and ecological indicators. Specifically, the temperature is significantly positively correlated with annual NDVI (R 2 = 0.37, p < 0.05), with annual mean LAI (R 2 = 0.35, p < 0.05) and with annual GPP (R 2 = 0.37, p < 0.05). In addition, there is a moderate positive correlation between mean EVI and mean growing season air temperature (R 2 = 0.24); annual mean air temperature is a moderate positive correlation with annual NPP (R 2 = 0.28). Our findings confirm that temperature is more closely related to ecological factors than precipitation over the YRB in these decades.

Suggested Citation

  • Feiyan Chen & Aiwen Lin & Hongji Zhu & Jiqiang Niu, 2018. "Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3026-:d:165781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan K. Kazak, 2018. "The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    2. Mingkui Cao & F. Ian Woodward, 1998. "Dynamic responses of terrestrial ecosystem carbon cycling to global climate change," Nature, Nature, vol. 393(6682), pages 249-252, May.
    3. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    4. Peter B. Reich & Kerrie M. Sendall & Artur Stefanski & Xiaorong Wei & Roy L. Rich & Rebecca A. Montgomery, 2016. "Boreal and temperate trees show strong acclimation of respiration to warming," Nature, Nature, vol. 531(7596), pages 633-636, March.
    5. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Chen & Ningbo Cui & Yaowei Huang & Xiaotao Hu & Daozhi Gong & Yaosheng Wang & Min Lv & Shouzheng Jiang, 2021. "Investigating the Patterns and Controls of Ecosystem Light Use Efficiency with the Data from the Global Farmland Fluxdata Network," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    2. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    3. Elaine Wheaton & Suren Kulshreshtha, 2017. "Environmental Sustainability of Agriculture Stressed by Changing Extremes of Drought and Excess Moisture: A Conceptual Review," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    4. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    5. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    6. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    7. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    8. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    9. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    10. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    11. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    12. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    13. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    14. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    15. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    17. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    18. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    19. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    20. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3026-:d:165781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.