IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1366-d143612.html
   My bibliography  Save this article

A Hybrid Genetic Algorithm for Multi-Trip Green Capacitated Arc Routing Problem in the Scope of Urban Services

Author

Listed:
  • Erfan Babaee Tirkolaee

    (Department of Industrial Engineering, Mazandaran University of Science and Technology, 47166-85635 Babol, Iran)

  • Ali Asghar Rahmani Hosseinabadi

    (Young Researchers and Elite Club, Ayatollah Amoli Branch, Islamic Azad University, 46351-43358 Amol, Iran)

  • Mehdi Soltani

    (Department of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, 34185-1416 Qazvin, Iran)

  • Arun Kumar Sangaiah

    (School of Computing Science and Engineering, Vellore Institute of Technology (VIT), 632014 Vellore, India)

  • Jin Wang

    (School of Computer & Communication Engineering, Changsha University of Science & Technology, 410004 Changsha, China)

Abstract

Greenhouse gases (GHG) are the main reason for the global warming during the past decades. On the other hand, establishing a well-structured transportation system will yield to create least cost-pollution. This paper addresses a novel model for the multi-trip Green Capacitated Arc Routing Problem (G-CARP) with the aim of minimizing total cost including the cost of generation and emission of greenhouse gases, the cost of vehicle usage and routing cost. The cost of generation and emission of greenhouse gases is based on the calculation of the amount of carbon dioxide emitted from vehicles, which depends on such factors as the vehicle speed, weather conditions, load on the vehicle and traveled distance. The main applications of this problem are in municipalities for urban waste collection, road surface marking and so forth. Due to NP-hardness of the problem, a Hybrid Genetic Algorithm (HGA) is developed, wherein a heuristic and simulated annealing algorithm are applied to generate initial solutions and a Genetic Algorithm (GA) is then used to generate the best possible solution. The obtained numerical results indicate that the proposed algorithm could present desirable performance within a suitable computational run time. Finally, a sensitivity analysis is implemented on the maximum available time of the vehicles in order to determine the optimal policy.

Suggested Citation

  • Erfan Babaee Tirkolaee & Ali Asghar Rahmani Hosseinabadi & Mehdi Soltani & Arun Kumar Sangaiah & Jin Wang, 2018. "A Hybrid Genetic Algorithm for Multi-Trip Green Capacitated Arc Routing Problem in the Scope of Urban Services," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1366-:d:143612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ting-Chia Ou, 2018. "Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy," Energies, MDPI, vol. 11(3), pages 1-10, February.
    2. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    3. Gilbert Laporte & Roberto Musmanno & Francesca Vocaturo, 2010. "An Adaptive Large Neighbourhood Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 125-135, February.
    4. W Maden & R Eglese & D Black, 2010. "Vehicle routing and scheduling with time-varying data: A case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 515-522, March.
    5. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    6. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    7. Lacomme, Philippe & Prins, Christian & Ramdane-Cherif, Wahiba, 2005. "Evolutionary algorithms for periodic arc routing problems," European Journal of Operational Research, Elsevier, vol. 165(2), pages 535-553, September.
    8. Ferretti, I. & Zanoni, S. & Zavanella, L. & Diana, A., 2007. "Greening the aluminium supply chain," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 236-245, July.
    9. Li, Jing-Quan & Borenstein, Denis & Mirchandani, Pitu B., 2008. "Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil," Omega, Elsevier, vol. 36(6), pages 1133-1149, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhirendra Prajapati & M. Manoj Kumar & Saurabh Pratap & H. Chelladurai & Mohd Zuhair, 2021. "Sustainable Logistics Network Design for Delivery Operations with Time Horizons in B2B E-Commerce Platform," Logistics, MDPI, vol. 5(3), pages 1-13, September.
    2. Judit Oláh & József Popp & Szabolcs Duleba & Anna Kiss & Zoltán Lakner, 2021. "Positioning Bio-Based Energy Systems in a Hypercomplex Decision Space—A Case Study," Energies, MDPI, vol. 14(14), pages 1-23, July.
    3. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
    5. Jin Wang & Yu Gao & Wei Liu & Arun Kumar Sangaiah & Hye-Jin Kim, 2019. "An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(3), pages 15501477198, March.
    6. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    7. Ping Liu & Jin Wang & Arun Kumar Sangaiah & Yang Xie & Xinchun Yin, 2019. "Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in IoT Environment," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    8. Erfan Babaee Tirkolaee & Alireza Goli & Selma Gütmen & Gerhard-Wilhelm Weber & Katarzyna Szwedzka, 2023. "A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms," Annals of Operations Research, Springer, vol. 324(1), pages 189-214, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    2. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    3. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    4. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    5. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    6. Sun, Qirun & Wu, Zhi & Gu, Wei & Zhu, Tao & Zhong, Lei & Gao, Ting, 2021. "Flexible expansion planning of distribution system integrating multiple renewable energy sources: An approximate dynamic programming approach," Energy, Elsevier, vol. 226(C).
    7. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    8. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    9. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    10. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    11. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    12. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    13. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    14. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    15. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    16. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    17. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    18. Alenka Hren & Franc Mihalič, 2018. "An Improved SPWM-Based Control with Over-Modulation Strategy of the Third Harmonic Elimination for a Single-Phase Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
    19. Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
    20. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1366-:d:143612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.