IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p254-d127731.html
   My bibliography  Save this article

Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario

Author

Listed:
  • Paolo La Greca

    (Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy)

  • Giuseppe Margani

    (Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy)

Abstract

One of the main challenges of the twenty-first century is to increase the sustainability level of our cities. However, a town, to be considered sustainable, must, above all, be safe, particularly against natural hazards, which in Europe are mostly related to climate changes (e.g., hurricanes, floods, storms, and landslides) and seismic events (earthquakes). Unfortunately, sustainability is still not a prerogative of most European cities, especially those placed in seismic countries such as Italy, where at least 50% of the residential stock is earthquake-prone, while over 80% of the same stock is highly energy-consuming and carbon dioxide-emitting, thus contributing to trigger hazards related to climate changes. In this context, renovation actions, which combine both energy and seismic issues are strongly needed. Nevertheless, several technical, organizational and financial barriers considerably limit the real possibility to extensively undertake this kind of renovation. This study analyzes such barriers, with particular reference to the Italian scenario, suggesting and discussing possible solutions and underlining the advantages of increasing energy and seismic performances at the same time. The proposed solutions may be effectively extended to many other countries with similar socio-economic scenarios.

Suggested Citation

  • Paolo La Greca & Giuseppe Margani, 2018. "Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:254-:d:127731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Ceroni, Francesca & De Masi, Rosa Francesca & de’ Rossi, Filippo & Pecce, Maria Rosaria, 2017. "Historical buildings: Multidisciplinary approach to structural/energy diagnosis and performance assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1517-1528.
    2. Andreas Kappos & E. Dimitrakopoulos, 2008. "Feasibility of pre-earthquake strengthening of buildings based on cost-benefit and life-cycle cost analysis, with the aid of fragility curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 33-54, April.
    3. Tripathy, M. & Sadhu, P.K. & Panda, S.K., 2016. "A critical review on building integrated photovoltaic products and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 451-465.
    4. Baek, Cheonghoon & Park, Sanghoon, 2012. "Policy measures to overcome barriers to energy renovation of existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3939-3947.
    5. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    6. Munarim, Ulisses & Ghisi, Enedir, 2016. "Environmental feasibility of heritage buildings rehabilitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 235-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastiano D’Urso & Bruno Cicero, 2019. "From the Efficiency of Nature to Parametric Design. A Holistic Approach for Sustainable Building Renovation in Seismic Regions," Sustainability, MDPI, vol. 11(5), pages 1-20, February.
    2. Tiziana Basiricò & Daniele Enea, 2018. "Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy)," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    3. Jacopo Zanni & Stefano Cademartori & Alessandra Marini & Andrea Belleri & Chiara Passoni & Ezio Giuriani & Paolo Riva & Barbara Angi & Giovanni Brumana & Angelo Luigi Marchetti, 2021. "Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    4. Gianpiero Evola & Vincenzo Costanzo & Luigi Marletta, 2021. "Hygrothermal and Acoustic Performance of Two Innovative Envelope Renovation Solutions Developed in the e-SAFE Project," Energies, MDPI, vol. 14(13), pages 1-19, July.
    5. Emil-Sever Georgescu & Mihaela Stela Georgescu & Zina Macri & Edoardo Michele Marino & Giuseppe Margani & Vasile Meita & Radu Pana & Santi Maria Cascone & Horia Petran & Pier Paolo Rossi & Vincenzo Sa, 2018. "Seismic and Energy Renovation: A Review of the Code Requirements and Solutions in Italy and Romania," Sustainability, MDPI, vol. 10(5), pages 1-36, May.
    6. Luca Pozza & Anna Degli Esposti & Alessandra Bonoli & Diego Talledo & Luca Barbaresi & Giovanni Semprini & Marco Savoia, 2021. "Multidisciplinary Performance Assessment of an Eco-Sustainable RC-Framed Skin for the Integrated Upgrading of Existing Buildings," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    7. Giovanna Acampa & Lorenzo Diana & Giorgia Marino & Rossella Marmo, 2021. "Assessing the Transformability of Public Housing through BIM," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    8. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    9. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    10. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    11. Riccardo Privitera & Daniele La Rosa, 2018. "Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    12. Valentina Pertile & Alberto Stella & Lorenzo De Stefani & Roberto Scotta, 2021. "Seismic and Energy Integrated Retrofitting of Existing Buildings with an Innovative ICF-Based System: Design Principles and Case Studies," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    13. Marina Fumo & Antonio Formisano & Giulia Sibilio & Antonella Violano, 2018. "Energy and Seismic Recovering of Ancient Hamlets: the Case of Baia e Latina," Sustainability, MDPI, vol. 10(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    3. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Antonio Galiano-Garrigós & Ángel González-Avilés & Carlos Rizo-Maestre & MªDolores Andújar-Montoya, 2019. "Energy Efficiency and Economic Viability as Decision Factors in the Rehabilitation of Historic Buildings," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
    5. María Beatriz Piderit & Susan Agurto & Laura Marín-Restrepo, 2019. "Reconciling Energy and Heritage: Retrofit of Heritage Buildings in Contexts of Energy Vulnerability," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    6. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    7. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    8. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    9. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    10. Fabrizio M. Amoruso & Min-Hee Sonn & Soyeon Chu & Thorsten Schuetze, 2021. "Sustainable Building Legislation and Incentives in Korea: A Case-Study-Based Comparison of Building New and Renovation," Sustainability, MDPI, vol. 13(9), pages 1-41, April.
    11. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    12. Osseweijer, Floor J.W. & van den Hurk, Linda B.P. & Teunissen, Erik J.H.M. & van Sark, Wilfried G.J.H.M., 2018. "A comparative review of building integrated photovoltaics ecosystems in selected European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1027-1040.
    13. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    14. Kadri Keskküla & Tambet Aru & Mihkel Kiviste & Martti-Jaan Miljan, 2020. "Hygrothermal Analysis of Masonry Wall with Reed Boards as Interior Insulation System," Energies, MDPI, vol. 13(20), pages 1-10, October.
    15. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    16. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    17. Athanasios Gkimprixis & John Douglas & Enrico Tubaldi, 2021. "Seismic risk management through insurance and its sensitivity to uncertainty in the hazard model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1629-1657, September.
    18. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    19. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Geertje Bekebrede & Ellen Van Bueren & Ivo Wenzler, 2018. "Towards a Joint Local Energy Transition Process in Urban Districts: The GO2Zero Simulation Game," Sustainability, MDPI, vol. 10(8), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:254-:d:127731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.