IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4682-d189138.html
   My bibliography  Save this article

Addressing Misconceptions to the Concept of Resilience in Environmental Education

Author

Listed:
  • Ali Kharrazi

    (Center for the Development of Global Leadership Education, University of Tokyo, Tokyo 113-8654, Japan
    Advanced Systems Analysis Group, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria)

  • Shogo Kudo

    (Graduate Program in Sustainability Science—Global Leadership Initiative (GPSS-GLI), Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8563, Japan)

  • Doreen Allasiw

    (Graduate Program in Sustainability Science—Global Leadership Initiative (GPSS-GLI), Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8563, Japan)

Abstract

Environmental education is shaped in response to societal and environmental realities and it reflects new interests and demands that enable sustainable transformations. In recent years, the concept of resilience has taken an increasingly significant role among practitioners, researchers, policymakers, and especially within the Sustainable Development Goals (SDGs). Despite its growing importance, the literature surrounding the concept of resilience has struggled to find a consensus on definitions and measurements and therefore may be easily misconceived. In this avenue, a consensus among varying perspectives of resilience may be better achieved by understanding the interaction between students’ prior knowledge (pre-conception) of resilience and the knowledge provided by educators. Based on the case study of five courses that teach the concept of this paper firstly identifies and discusses three common misconceptions among students, focusing on the concept of socio-ecological resilience. These include misconceptions to the value judgment, adaptability, and the costs that are relevant to the concept of resilience. Secondly, this paper discusses educational tools derived from scenario planning and theoretical foundations underlying empirical approaches to the concept of resilience, which may benefit educators in enabling critical thinking to address such common misconceptions. This paper may contribute to ongoing discussions in the environmental education literature, specifically to both pedagogy and curriculum focusing on the concept of resilience.

Suggested Citation

  • Ali Kharrazi & Shogo Kudo & Doreen Allasiw, 2018. "Addressing Misconceptions to the Concept of Resilience in Environmental Education," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4682-:d:189138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kharrazi, Ali & Sato, Masahiro & Yarime, Masaru & Nakayama, Hirofumi & Yu, Yadong & Kraines, Steven, 2015. "Examining the resilience of national energy systems: Measurements of diversity in production-based and consumption-based electricity in the globalization of trade networks," Energy Policy, Elsevier, vol. 87(C), pages 455-464.
    2. Stephen R. Carpenter & Kenneth J. Arrow & Scott Barrett & Reinette Biggs & William A. Brock & Anne-Sophie Crépin & Gustav Engström & Carl Folke & Terry P. Hughes & Nils Kautsky & Chuan-Zhong Li & Geof, 2012. "General Resilience to Cope with Extreme Events," Sustainability, MDPI, vol. 4(12), pages 1-12, November.
    3. Sara Meerow & Joshua P. Newell, 2015. "Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 236-251, April.
    4. Mary Ann Curran, 2009. "Wrapping Our Brains around Sustainability," Sustainability, MDPI, vol. 1(1), pages 1-9, March.
    5. Strunz, Sebastian, 2012. "Is conceptual vagueness an asset? Arguments from philosophy of science applied to the concept of resilience," Ecological Economics, Elsevier, vol. 76(C), pages 112-118.
    6. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    7. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Bascopé & Kristina Reiss, 2021. "Place-Based STEM Education for Sustainability: A Path towards Socioecological Resilience," Sustainability, MDPI, vol. 13(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    2. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    3. Srivardhini K. Jha & E. Richard Gold & Laurette Dubé, 2021. "Modular Interorganizational Network Governance: A Conceptual Framework for Addressing Complex Social Problems," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    4. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    5. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    6. Tang, Qianyong & Li, Huajiao & Qi, Yajie & Li, Yang & Liu, Haiping & Wang, Xingxing, 2023. "The reliability of the trade dependence network in the tungsten industry chain based on percolation," Resources Policy, Elsevier, vol. 82(C).
    7. Hongtao Ren & Wenji Zhou & Marek Makowski & Hongbin Yan & Yadong Yu & Tieju Ma, 2021. "Incorporation of life cycle emissions and carbon price uncertainty into the supply chain network management of PVC production," Annals of Operations Research, Springer, vol. 300(2), pages 601-620, May.
    8. Dragicevic, Arnaud Z. & Shogren, Jason F., 2021. "Preservation Value in Socio-Ecological Systems," Ecological Modelling, Elsevier, vol. 443(C).
    9. Ivanova, Inga & Strand, Øivind & Kushnir, Duncan & Leydesdorff, Loet, 2017. "Economic and technological complexity: A model study of indicators of knowledge-based innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 77-89.
    10. Arora-Jonsson, Seema, 2016. "Does resilience have a culture? Ecocultures and the politics of knowledge production," Ecological Economics, Elsevier, vol. 121(C), pages 98-107.
    11. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    12. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    13. Yong Xiang & Yonghua Chen & Yangyang Su & Zeyou Chen & Junna Meng, 2023. "Research on the Evaluation and Spatial–Temporal Evolution of Safe and Resilient Cities Based on Catastrophe Theory—A Case Study of Ten Regions in Western China," Sustainability, MDPI, vol. 15(12), pages 1-50, June.
    14. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    15. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    16. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. d'Errico, Marco & Di Giuseppe, Stefania, 2018. "Resilience mobility in Uganda: A dynamic analysis," World Development, Elsevier, vol. 104(C), pages 78-96.
    18. Ming Lu & Zhuolin Tan & Chao Yuan & Yu Dong & Wei Dong, 2023. "Resilience Measurements and Dynamics of Resource-Based Cities in Heilongjiang Province, China," Land, MDPI, vol. 12(2), pages 1-22, January.
    19. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
    20. Handi Chandra‐Putra & Clinton J. Andrews, 2020. "An integrated model of real estate market responses to coastal flooding," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 424-435, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4682-:d:189138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.