IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4676-d188990.html
   My bibliography  Save this article

Vegetation Restoration and Its Environmental Effects on the Loess Plateau

Author

Listed:
  • Hongfei Zhao

    (School of Geographic Sciences, East China Normal University, Shanghai 210062, China
    State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest University of Agriculture and Forestry, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Hongming He

    (School of Geographic Sciences, East China Normal University, Shanghai 210062, China
    State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest University of Agriculture and Forestry, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Jingjing Wang

    (State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest University of Agriculture and Forestry, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Chunyu Bai

    (State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest University of Agriculture and Forestry, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Chuangjuan Zhang

    (State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest University of Agriculture and Forestry, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

Abstract

An analysis of land use/cover change (LUCC) on the Loess Plateau over the past 30 years and its environmental effects was performed to provide scientific guidance for a sustainable development policy for the regional ecological environment and social economy. Geostatistical and trend analyses are used to study the LUCC characteristics, driving forces and environmental effects, and the relationship between LUCC and regional sustainable development is explored. The following results were obtained: (1) Overall, the land use structure has not changed, with grassland, farmland, and forest land remaining dominant; however, the vegetation coverage has significantly increased, especially in the central area. (2) LUCC is affected by climate change and human activities, with greater climate change impacts in the northwest than the southeast and greater among which human-induced impacts on the hilly/gully region in the central part. (3) LUCC will produce long-term ecological and environmental processes, such as surface runoff, soil erosion, soil moisture and carbon cycling. Vegetation restoration has both negative and positive effects on the regional ecological environment. Vegetation productivity on the Loess Plateau has approached the water resource carrying capacity threshold. Therefore, improving artificial vegetation stability and promoting the water resources balance have become the main strategies for promoting sustainable development on the Loess Plateau.

Suggested Citation

  • Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4676-:d:188990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    2. Qingfeng Han & Kadambot H. M. Siddique & Fengmin Li, 2018. "Adoption of Conservation Tillage on the Semi-Arid Loess Plateau of Northwest China," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    3. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    4. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Xiaoying Liang & Hui Jia & Hai Chen & Di Liu & Hang Zhang, 2018. "Landscape Sustainability in the Loess Hilly Gully Region of the Loess Plateau: A Case Study of Mizhi County in Shanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    6. Jiang, Chong & Zhang, Haiyan & Tang, Zhipeng & Labzovskii, Lev, 2017. "Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China," Land Use Policy, Elsevier, vol. 69(C), pages 134-148.
    7. Hou, Lingling & Hoag, Dana & Keske, Catherine M.H. & Lu, Changhe, 2014. "Sustainable value of degraded soils in China's Loess Plateau: An updated approach," Ecological Economics, Elsevier, vol. 97(C), pages 20-27.
    8. Wang, X.C. & Muhammad, T.N. & Hao, M.D. & Li, J., 2011. "Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 98(8), pages 1262-1270, May.
    9. Grizzetti, B. & Lanzanova, D. & Liquete, C. & Reynaud, A. & Cardoso, A.C., 2016. "Assessing water ecosystem services for water resource management," Environmental Science & Policy, Elsevier, vol. 61(C), pages 194-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jifeng Lin & Yunhong Lin & Hongfei Zhao & Hongming He, 2022. "Soil Erosion Processes and Geographical Differentiation in Shaanxi during 1980–2015," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    2. Wei Wang & Lin Sun & Yi Luo, 2019. "Changes in Vegetation Greenness in the Upper and Middle Reaches of the Yellow River Basin over 2000–2015," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    3. Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
    4. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    5. Jiahui Zhou & Peng Gao & Changxue Wu & Xingmin Mu, 2023. "Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin," Land, MDPI, vol. 12(9), pages 1-20, August.
    6. Wei Xu & Yuqi Miao & Shuaimeng Zhu & Jimin Cheng & Jingwei Jin, 2023. "Modelling the Geographical Distribution Pattern of Apple Trees on the Loess Plateau, China," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    7. Yunfeng Hu & Rina Dao & Yang Hu, 2019. "Vegetation Change and Driving Factors: Contribution Analysis in the Loess Plateau of China during 2000–2015," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    8. Xiaoning Hu & Meizi Si & Han Luo & Mancai Guo & Jijun Wang, 2019. "The Method and Model of Ecological Technology Evaluation," Sustainability, MDPI, vol. 11(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jifeng Lin & Yunhong Lin & Hongfei Zhao & Hongming He, 2022. "Soil Erosion Processes and Geographical Differentiation in Shaanxi during 1980–2015," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    2. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    3. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    4. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    7. Leting Lyu & Xiaorui Wang & Caizhi Sun & Tiantian Ren & Defeng Zheng, 2019. "Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    8. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    9. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    10. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    11. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    12. Jonathan Fletcher & Nigel Willby & David M. Oliver & Richard S. Quilliam, 2023. "Field-Scale Floating Treatment Wetlands: Quantifying Ecosystem Service Provision from Monoculture vs. Polyculture Macrophyte Communities," Land, MDPI, vol. 12(7), pages 1-15, July.
    13. Suifeng Zhang & Wang Zhang & Canhua Liu, 2023. "Research on Value Evaluation and Impact Mechanism of Water Ecological Services in Mountainous Cities: A Case Study of Xiangxi Prefecture," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    14. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    15. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    16. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    17. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    18. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    19. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    20. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4676-:d:188990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.