IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i8p1262-1270.html
   My bibliography  Save this article

Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau

Author

Listed:
  • Wang, X.C.
  • Muhammad, T.N.
  • Hao, M.D.
  • Li, J.

Abstract

Soil desiccation is one of the key factors to influence the sustainable development of crop production on the Loess Plateau of China. Depletion of soil water during growth period and its recovery in the fallow period is influenced by the amount of rainfall, its distribution, the type of crop and its rotation sequence. This study analyzed depletion and restoration of soil water for different cropping systems, based on a series of long-term experimental data at Changwu Agriculture Station from 1985 to 2001. Results of this study indicated that: (1) temporary soil desiccation took place in 1-3Â m soil for MM, PWM and MW cropping system. (2) Permanent soil desiccation took place in 1-5Â m and 1-10Â m soil for APW and AF cropping system respectively. (3) When a rotation system was built to recover soil desiccation, broomcorn millet and potato can be considered first pea and spring maize also can be considered in rainy years or normal years. During fallow period, mulch or canopy can relief the soil desiccation in winter wheat land.

Suggested Citation

  • Wang, X.C. & Muhammad, T.N. & Hao, M.D. & Li, J., 2011. "Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 98(8), pages 1262-1270, May.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1262-1270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000576
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    2. Wang, Xiao-Ling & Sun, Guo-Jun & Jia, Yu & Li, Feng-Min & Xu, Jin-Zhang, 2008. "Crop yield and soil water restoration on 9-year-old alfalfa pasture in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 95(3), pages 190-198, March.
    3. Huang, Mingbin & Gallichand, Jacques, 2006. "Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 67-76, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hongli & Zhang, Xucheng & Yu, Xianfen & Hou, Huizhi & Fang, Yanjie & Ma, Yifan, 2018. "Maize–fababean rotation under double ridge and furrows with plastic mulching alleviates soil water depletion," Agricultural Water Management, Elsevier, vol. 207(C), pages 59-66.
    2. Wang, Qi & Zhang, Dengkui & Zhou, Xujiao & Mak-Mensah, Erastus & Zhao, Xiaole & Zhao, Wucheng & Wang, Xiaoyun & Stellmach, Dan & Liu, Qinglin & Li, Xiaoling & Li, Guang & Wang, Heling & Zhang, Kai, 2022. "Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    4. Xuerui Gao & Ai Wang & Yong Zhao & Xining Zhao & Miao Sun & Junkai Du & Chengcheng Gang, 2018. "Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change," IJERPH, MDPI, vol. 15(11), pages 1-21, November.
    5. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Turkeltaub, Tuvia & Gongadze, Kate & Lü, Yihe & Huang, Mingbin & Jia, Xiaoxu & Yang, Huiyi & Shao, Ming'an & Binley, Andrew & Harris, Paul & Wu, Lianhai, 2022. "A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the Loess Plateau, China," Ecological Modelling, Elsevier, vol. 474(C).
    3. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    4. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Fan, Tinglu & Wang, Shuying & Xiaoming, Tang & Luo, Junjie & Stewart, Bob A. & Gao, Yufeng, 2005. "Grain yield and water use in a long-term fertilization trial in Northwest China," Agricultural Water Management, Elsevier, vol. 76(1), pages 36-52, July.
    6. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    7. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    8. B. Wang & W. Liu & Q. Xue & T. Dang & C. Gao & J. Chen & B. Zhang, 2013. "Soil water cycle and crop water use efficiency after long-term nitrogen fertilization in Loess Plateau," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-7.
    9. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    10. Zhu, Ping & Jia, Xiaoxu & Zhao, Chunlei & Shao, Mingan, 2022. "Long-term soil moisture evolution and its driving factors across China’s agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    12. Lee, Sangchul & Qi, Junyu & McCarty, Gregory W. & Anderson, Martha & Yang, Yun & Zhang, Xuesong & Moglen, Glenn E. & Kwak, Dooahn & Kim, Hyunglok & Lakshmi, Venkataraman & Kim, Seongyun, 2022. "Combined use of crop yield statistics and remotely sensed products for enhanced simulations of evapotranspiration within an agricultural watershed," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Bing Wang & Fenxiang Wen & Jiangtao Wu & Xiaojun Wang & Yani Hu, 2014. "Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    14. Francis Azumah Chimsah & Liqun Cai & Jun Wu & Renzhi Zhang, 2020. "Outcomes of Long-Term Conservation Tillage Research in Northern China," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    15. Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
    16. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.
    17. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Jia, Yu-Hua & Shao, Ming-An, 2013. "Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 117(C), pages 33-42.
    19. Rui Zhang & Yingnan Yang & Tinghui Dang & Yuanjun Zhu & Mingbin Huang, 2022. "Responses of Wheat Yield under Different Fertilization Treatments to Climate Change Based on a 35-Year In Situ Experiment," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    20. Li, Bingbing & Biswas, Asim & Wang, Yunqiang & Li, Zhi, 2021. "Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1262-1270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.