IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3683-d175610.html
   My bibliography  Save this article

Food Security for an Aging and Heavier Population

Author

Listed:
  • Felipe Vásquez

    (Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
    Co-first authorship.)

  • Gibran Vita

    (Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
    Co-first authorship.)

  • Daniel B. Müller

    (Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

Abstract

Changes in national and global food demand are commonly explained by population growth, dietary shifts, and food waste. Although nutrition sciences demonstrate that biophysical characteristics determine food requirements in individuals, and medical and demographic studies provide evidence for large shifts in height, weight, and age structure worldwide, the aggregated effects for food demand are poorly understood. Here, a type–cohort–time stock model is applied to analyze the combined effect of biophysical and demographic changes in the adult population of 186 countries between 1975–2014. The average global adult in 2014 was 14% heavier, 1.3% taller, 6.2% older, and had a 6.1% higher energy demand than the average adult in 1975. Across countries, individuals’ weight gains ranged between 6–33%, and energy needs increased between 0.9–16%. Noteworthy, some of the highest and lowest increases coexist within Africa and Asia, signaling the disparities between the countries of these regions. Globally, food energy increased by 129% during the studied period. Population growth contributed with 116%; weight and height gains accounted for 15%; meanwhile, the aging phenomenon counteracted the rise in energy needs by −2%. This net additional 13% demand corresponded to the needs of 286 million adults. Since the effect of biodemographic changes are cumulative, we can expect the observed inertia to extend into the future. This work shows that considering the evolving individual biophysical characteristics jointly with sociodemographic changes can contribute to more robust global resource and food security assessments. Commonly used static and homogenous caloric demand values per capita might lead to misrepresentations of actual needs. What previous analyses could have estimated as increased food availability, sufficiency, or surplus waste might actually be energy sequestered by the mass of the human lot. Based on the discovered trends, feeding nine billion people in 2050 will require significantly more total calories than feeding the same people today.

Suggested Citation

  • Felipe Vásquez & Gibran Vita & Daniel B. Müller, 2018. "Food Security for an Aging and Heavier Population," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3683-:d:175610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Ronald Lee & Andrew Mason (ed.), 2011. "Population Aging and the Generational Economy," Books, Edward Elgar Publishing, number 13816.
    3. Kevin D Hall & Juen Guo & Michael Dore & Carson C Chow, 2009. "The Progressive Increase of Food Waste in America and Its Environmental Impact," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-6, November.
    4. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    5. Julie Gould, 2017. "Nutrition: A world of insecurity," Nature, Nature, vol. 544(7651), pages 6-7, April.
    6. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2008. "The coming acceleration of global population ageing," Nature, Nature, vol. 451(7179), pages 716-719, February.
    7. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    8. Simon L. Lewis & Mark A. Maslin, 2015. "Defining the Anthropocene," Nature, Nature, vol. 519(7542), pages 171-180, March.
    9. Narasimha D. Rao & Paul Baer, 2012. "“Decent Living” Emissions: A Conceptual Framework," Sustainability, MDPI, vol. 4(4), pages 1-26, April.
    10. James W. Vaupel, 2010. "Biodemography of human ageing," Nature, Nature, vol. 464(7288), pages 536-542, March.
    11. Narasimha D. Rao & Jihoon Min, 2018. "Decent Living Standards: Material Prerequisites for Human Wellbeing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 225-244, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianfeng Ma & Pomi Shahbaz & Shamsheer ul Haq & Ismet Boz, 2023. "Exploring the Moderating Role of Environmental Education in Promoting a Clean Environment," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    2. Vita, Gibran & Ivanova, Diana & Dumitru, Adina & Mira, Ricardo García & Carrus, Giuseppe & Stadler, Konstantin & Krause, Karen & Wood, Richard & Hertwich, Edgar, 2019. "Happier with less? Members of European environmental grassroots initiatives reconcile lower carbon footprints with higher life satisfaction and income increases," SocArXiv 3at5z, Center for Open Science.
    3. Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Abdus Samie & Ismet Boz & Salim Bagadeem & Ziyue Yu & Zhihui Li, 2022. "Food, Energy, and Water Nexus at Household Level: Do Sustainable Household Consumption Practices Promote Cleaner Environment?," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    4. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    5. Lili Guo & Yuting Song & Shuang Zhao & Mengqian Tang & Yangli Guo & Mengying Su & Houjian Li, 2022. "Dynamic Linkage between Aging, Mechanizations and Carbon Emissions from Agricultural Production," IJERPH, MDPI, vol. 19(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. zu Ermgassen, Sophus & Drewniok, Michal & Bull, Joseph & Walker, Christine Corlet & Mancini, Mattia & Ryan-Collins, Josh & Serrenho, André Cabrera, 2022. "A home for all within planetary boundaries: pathways for meeting England’s housing needs without transgressing national climate and biodiversity goals," OSF Preprints 5kxce, Center for Open Science.
    2. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    3. Céline Guivarch & Nicolas Taconet, 2020. "Inégalités mondiales et changement climatique," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 35-70.
    4. Marinella Davide & Enrica De Cian & Alexis Bernigaud, 2019. "Building a Framework to Understand the Energy Needs of Adaptation," Sustainability, MDPI, vol. 11(15), pages 1-32, July.
    5. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    6. Ivanova, Diana & Büchs, Milena, 2022. "Implications of shrinking household sizes for meeting the 1.5 °C climate targets," Ecological Economics, Elsevier, vol. 202(C).
    7. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
    8. David McCarthy, 2021. "80 will be the new 70: Old‐age mortality postponement in the United States and its likely effect on the finances of the OASI program," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 381-412, June.
    9. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    10. zu Ermgassen, Sophus O.S.E. & Drewniok, Michal P. & Bull, Joseph W. & Corlet Walker, Christine M. & Mancini, Mattia & Ryan-Collins, Josh & Cabrera Serrenho, André, 2022. "A home for all within planetary boundaries: Pathways for meeting England's housing needs without transgressing national climate and biodiversity goals," Ecological Economics, Elsevier, vol. 201(C).
    11. Elke Pirgmaier & Julia K. Steinberger, 2019. "Roots, Riots, and Radical Change—A Road Less Travelled for Ecological Economics," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    12. Jeroen J A Spijker, 2023. "Combining remaining life expectancy and time to death as a measure of old-age dependency related to health care needs," International Journal of Health Economics and Management, Springer, vol. 23(2), pages 173-187, June.
    13. Joel Millward-Hopkins, 2022. "Inequality can double the energy required to secure universal decent living," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    15. Crelis F. Rammelt & Joyeeta Gupta & Diana Liverman & Joeri Scholtens & Daniel Ciobanu & Jesse F. Abrams & Xuemei Bai & Lauren Gifford & Christopher Gordon & Margot Hurlbert & Cristina Y. A. Inoue & Li, 2023. "Impacts of meeting minimum access on critical earth systems amidst the Great Inequality," Nature Sustainability, Nature, vol. 6(2), pages 212-221, February.
    16. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    17. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    18. Edouard Debonneuil & Anne Eyraud-Loisel & Frédéric Planchet, 2017. "Conditions Of Interest Of A Longevity Megafund For Pension Funds," Working Papers hal-01571937, HAL.
    19. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    20. Tironi, Martín & Rivera Lisboa, Diego Ignacio, 2023. "Artificial intelligence in the new forms of environmental governance in the Chilean State: Towards an eco-algorithmic governance," Technology in Society, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3683-:d:175610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.