IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i1p7-109d1322804.html
   My bibliography  Save this article

Statistical Framework: Estimating the Cumulative Shares of Nobel Prizes from 1901 to 2022

Author

Listed:
  • Xu Zhang

    (Department of Mathematics, University of Maryland, College Park, MD 20742, USA)

  • Bruce Golden

    (Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA)

  • Edward Wasil

    (Kogod School of Business, American University, Washington, DC 20016, USA)

Abstract

Studying trends in the geographical distribution of the Nobel Prize is an interesting topic that has been examined in the academic literature. To track the trends, we develop a stochastic estimate for the cumulative shares of Nobel Prizes awarded to recipients in four geographical groups: North America, Europe, Asia, Other. Specifically, we propose two models to estimate how cumulative shares change over time in the four groups. We estimate parameters, develop a prediction interval for each model, and validate our models. Finally, we apply our approach to estimate the distribution of the cumulative shares of Nobel Prizes for the four groups from 1901 to 2022.

Suggested Citation

  • Xu Zhang & Bruce Golden & Edward Wasil, 2024. "Statistical Framework: Estimating the Cumulative Shares of Nobel Prizes from 1901 to 2022," Stats, MDPI, vol. 7(1), pages 1-15, January.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:7-109:d:1322804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marasco, A. & Picucci, A. & Romano, A., 2016. "Market share dynamics using Lotka–Volterra models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 49-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Desogus & Beatrice Venturi, 2023. "Stability and Bifurcations in Banks and Small Enterprises—A Three-Dimensional Continuous-Time Dynamical System," JRFM, MDPI, vol. 16(3), pages 1-20, March.
    2. Chiara Sotis, 2021. "How do Google searches for symptoms, news and unemployment interact during COVID-19? A Lotka–Volterra analysis of google trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(6), pages 2001-2016, December.
    3. Hoang-Sa Dang & Ying-Fang Huang & Chia-Nan Wang & Thuy-Mai-Trinh Nguyen, 2016. "An Application of the Short-Term Forecasting with Limited Data in the Healthcare Traveling Industry," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    4. Chiara Natalie Focacci, 2023. "Old versus young: How much do countries spend on social benefits? Deterministic modeling for government expenditure," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 363-377, February.
    5. Gatabazi, P. & Mba, J.C. & Pindza, E. & Labuschagne, C., 2019. "Grey Lotka–Volterra models with application to cryptocurrencies adoption," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 47-57.
    6. Mihaela Sterpu & Carmen Rocșoreanu & Georgeta Soava & Anca Mehedintu, 2023. "A Generalization of the Grey Lotka–Volterra Model and Application to GDP, Export, Import and Investment for the European Union," Mathematics, MDPI, vol. 11(15), pages 1-23, July.
    7. Zhang, Guanglu & McAdams, Daniel A. & Shankar, Venkatesh & Darani, Milad Mohammadi, 2017. "Modeling the evolution of system technology performance when component and system technology performances interact: Commensalism and amensalism," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 116-124.
    8. Addolorata Marasco & Alessandro Romano, 2018. "Deterministic modeling in scenario forecasting: estimating the effects of two public policies on intergenerational conflict," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2345-2371, September.
    9. Goran Dominioni & Addolorata Marasco & Alessandro Romano, 2018. "A mathematical approach to study and forecast racial groups interactions: deterministic modeling and scenario method," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1929-1956, July.
    10. Marasco, Addolorata & Romano, Alessandro, 2018. "Inter-port interactions in the Le Havre-Hamburg range: A scenario analysis using a nonautonomous Lotka Volterra model," Journal of Transport Geography, Elsevier, vol. 69(C), pages 207-220.
    11. Focacci, Chiara Natalie, 2021. "Technological unemployment, robotisation, and green deal: A story of unstable spillovers in China and South Korea (2008–2018)," Technology in Society, Elsevier, vol. 64(C).
    12. Dominioni, Goran & Romano, Alessandro & Sotis, Chiari, 2019. "A quantitative study of the interactions between oil price and renewable energy sources stock prices," LSE Research Online Documents on Economics 100548, London School of Economics and Political Science, LSE Library.
    13. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:7-109:d:1322804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.