IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp47-57.html
   My bibliography  Save this article

Grey Lotka–Volterra models with application to cryptocurrencies adoption

Author

Listed:
  • Gatabazi, P.
  • Mba, J.C.
  • Pindza, E.
  • Labuschagne, C.

Abstract

The study uses grey Lotka–Volterra model (GLVM) of two and three dimensions for assessing the interaction between cryptocurrencies. The 2-dimensional study is on Bitcoin and Litecoin while the 3-dimensional study is on Bitcoin, Litecoin and Ripple. Records from 28-April-2013 to 10-February-2018 provide forecasting values for Bitcoin and Litecoin through 2-dimensional GLVM study, while records from 7-August-2013 to 10-February-2018 provide forecasting values of Bitcoin, Litecoin and Ripple through 3-dimensional GLVM study. The behaviour of Bitcoin and Litecoin or both Bitcoin, Litecoin and Ripple in future is proposed by looking at the 100 last forecasting values of n-dimensional GLVM study, n={2,3}. Lyapunov exponents of the 2 and 3-dimensional Lotka–Volterra models reveals that it is a chaotic dynamical system. Plots of 2 and 3-dimensional Lotka–Volterra models for filtered datasets suggest also a chaos. Using the mean absolute percentage error criterion, it was found that the accuracy of the GLVM is better than that of the grey model (GM(1,1)). By analysing the 2-dimensional GLVM, Bitcoin and Litecoin are found in the competition known as mutualism or equivalently a win-win situation where Bitcoin transaction is constant while Litecoin transaction has the increasing trend. The 3-dimensional GLVM analysis evokes however, an increasing trend in transacting both Bitcoin, Litecoin and Ripple where Bitcoin keep relatively higher transaction counts.

Suggested Citation

  • Gatabazi, P. & Mba, J.C. & Pindza, E. & Labuschagne, C., 2019. "Grey Lotka–Volterra models with application to cryptocurrencies adoption," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 47-57.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:47-57
    DOI: 10.1016/j.chaos.2019.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lakka, Spyridoula & Michalakelis, Christos & Varoutas, Dimitris & Martakos, Draculis, 2013. "Competitive dynamics in the operating systems market: Modeling and policy implications," Technological Forecasting and Social Change, Elsevier, vol. 80(1), pages 88-105.
    2. Joshua R. Hendrickson & Thomas L. Hogan & William J. Luther, 2016. "The Political Economy Of Bitcoin," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 925-939, April.
    3. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    4. Wang, Hsi-Tse & Wang, Ta-Chung, 2016. "Application of the grey Lotka–Volterra model to forecast the diffusion and competition analysis of the TV and smartphone industries," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 37-44.
    5. Cerqueti, Roy & Tramontana, Fabio & Ventura, Marco, 2015. "On the coexistence of innovators and imitators," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 487-496.
    6. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    7. Marasco, A. & Picucci, A. & Romano, A., 2016. "Market share dynamics using Lotka–Volterra models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 49-62.
    8. Adrian Blundell-Wignall, 2014. "The Bitcoin Question: Currency versus Trust-less Transfer Technology," OECD Working Papers on Finance, Insurance and Private Pensions 37, OECD Publishing.
    9. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 156-169.
    10. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    11. Lin, Chiun-Sin, 2013. "Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data," Economic Modelling, Elsevier, vol. 35(C), pages 207-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nokhaiz Tariq Khan & Javed Aslam & Ateeq Abdul Rauf & Yun Bae Kim, 2022. "The Case of South Korean Airlines-Within-Airlines Model: Helping Full-Service Carriers Challenge Low-Cost Carriers," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    2. Jules Clément Mba & Sutene Mwambetania Mwambi & Edson Pindza, 2022. "A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process," Forecasting, MDPI, vol. 4(2), pages 1-11, March.
    3. Shu, Jingsi & Zhang, Yongping, 2023. "Fractal control and synchronization of population competition model based on the T–S fuzzy model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Wang, Zheng-Xin & Li, Dan-Dan & Zheng, Hong-Hao, 2020. "Model comparison of GM(1,1) and DGM(1,1) based on Monte-Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Mihaela Sterpu & Carmen Rocșoreanu & Georgeta Soava & Anca Mehedintu, 2023. "A Generalization of the Grey Lotka–Volterra Model and Application to GDP, Export, Import and Investment for the European Union," Mathematics, MDPI, vol. 11(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gatabazi, P. & Mba, J.C. & Pindza, E., 2019. "Modeling cryptocurrencies transaction counts using variable-order Fractional Grey Lotka-Volterra dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 283-290.
    2. Goran Dominioni & Addolorata Marasco & Alessandro Romano, 2018. "A mathematical approach to study and forecast racial groups interactions: deterministic modeling and scenario method," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1929-1956, July.
    3. Addolorata Marasco & Alessandro Romano, 2018. "Deterministic modeling in scenario forecasting: estimating the effects of two public policies on intergenerational conflict," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2345-2371, September.
    4. Marasco, A. & Picucci, A. & Romano, A., 2016. "Market share dynamics using Lotka–Volterra models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 49-62.
    5. P. Gatabazi & J. C. Mba & E. Pindza, 2022. "Grey Verhulst model and its chaotic behaviour with application to Bitcoin adoption," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 327-341, June.
    6. Paul Gatabazi & Gaëtan Kabera & Jules Clement Mba & Edson Pindza & Sileshi Fanta Melesse, 2022. "Cryptocurrencies and Tokens Lifetime Analysis from 2009 to 2021," Economies, MDPI, vol. 10(3), pages 1-14, March.
    7. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    8. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    9. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    10. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    11. Mishra, Jyoti, 2019. "Modified Chua chaotic attractor with differential operators with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 64-72.
    12. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    13. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    14. Yang, Chunyu & Huang, Jue & Lin, Zhibin & Zhang, Danxia & Zhu, Ying & Xu, Xinghua & Chen, Mei, 2018. "Evaluating the symbiosis status of tourist towns: The case of Guizhou Province, China," Annals of Tourism Research, Elsevier, vol. 72(C), pages 109-125.
    15. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    16. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    17. Jalan, Akanksha & Matkovskyy, Roman & Urquhart, Andrew & Yarovaya, Larisa, 2023. "The role of interpersonal trust in cryptocurrency adoption," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    18. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    19. Kubeka, Amos S. & Doungmo Goufo, Emile F. & Khumalo, Melusi, 2018. "On the quasi-normal modes of a Schwarzschild white hole for the lower angular momentum and perturbation by non-local fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 348-357.
    20. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:47-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.