IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i9p91-d631432.html
   My bibliography  Save this article

Opportunities and Challenges of the European Green Deal for the Chemical Industry: An Approach Measuring Innovations in Bioeconomy

Author

Listed:
  • Lisa Thormann

    (Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Ulf Neuling

    (Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Martin Kaltschmitt

    (Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, 21073 Hamburg, Germany)

Abstract

The Circular Economy Action Plan, as part of the European Green Deal announced by the European Commission, is highly relevant to the chemical industry in relation to the production of sustainable products. Accordingly, the chemical industry faces the question of how far it can promote its own manufacture of sustainable products. Within this context, this article presents an approach on how to measure innovations in bioeconomy. The methodological framework developed provides the chemical industry with an approach to assess the effectiveness of innovative conversion technologies producing biogenic intermediate products (e.g., bulk chemicals). The innovations within the bioeconomy (TRL > 4; TRL—technology readiness level) are compared in terms of technical, economic, and environmental indicators for the current status, for the medium- and long-term as well as for different production sites. The methodological approach developed here is exemplarily applied, assessing the production of intermediate biogenic products via thermo-chemical conversion of lignocellulosic biomass. The results show the successful applicability of the developed assessment approach as well as significant differences in efficiency, costs, and environmental impact, both from the perspective of time and in spatial terms within the European Union. Thus, the methodological approach developed and presented enables the chemical industry to reduce challenges and to take advantage of the opportunities arising from the transition to a climate-neutral and circular economy.

Suggested Citation

  • Lisa Thormann & Ulf Neuling & Martin Kaltschmitt, 2021. "Opportunities and Challenges of the European Green Deal for the Chemical Industry: An Approach Measuring Innovations in Bioeconomy," Resources, MDPI, vol. 10(9), pages 1-31, September.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:9:p:91-:d:631432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/9/91/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/9/91/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    2. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    3. Carlota Perez, 2010. "Technological revolutions and techno-economic paradigms," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 34(1), pages 185-202, January.
    4. Spatari, S. & Larnaudie, V. & Mannoh, I. & Wheeler, M.C. & Macken, N.A. & Mullen, C.A. & Boateng, A.A., 2020. "Environmental, exergetic and economic tradeoffs of catalytic- and fast pyrolysis-to-renewable diesel," Renewable Energy, Elsevier, vol. 162(C), pages 371-380.
    5. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    6. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignat Raluca & Chiripuci Bogdan-Cristian & Pătărlăgeanu Simona Roxana & Constantin Marius & Lazăr Valentin, 2022. "Tackling market opportunities for the biomass production in Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 327-335, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    2. Perrin, Aurelie & Wohlfahrt, Julie & Morandi, Fabiana & Østergård, Hanne & Flatberg, Truls & De La Rua, Cristina & Bjørkvoll, Thor & Gabrielle, Benoit, 2017. "Integrated design and sustainable assessment of innovative biomass supply chains: A case-study on miscanthus in France," Applied Energy, Elsevier, vol. 204(C), pages 66-77.
    3. Mark Knell & Simone Vannuccini, 2022. "Tools and concepts for understanding disruptive technological change after Schumpeter," Jena Economics Research Papers 2022-005, Friedrich-Schiller-University Jena.
    4. Pietro Moncada-Paternò-Castello, 2022. "Top R&D investors, structural change and the R&D growth performance of young and old firms," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(1), pages 1-33, March.
    5. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    6. Eric Kemp‐Benedict, 2020. "Convergence of actual, warranted, and natural growth rates in a Kaleckian–Harrodian‐classical model," Metroeconomica, Wiley Blackwell, vol. 71(4), pages 851-881, November.
    7. Rita Strohmaier & Marlies Schuetz & Simone Vannuccini, 2019. "A systemic perspective on socioeconomic transformation in the digital age," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(3), pages 361-378, September.
    8. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2021. "Renewable electricity and economic growth relationship in the long run: Panel data econometric evidence from the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 330-341.
    9. Alessio Terzi & Monika Sherwood & Aneil Singh, 2023. "European industrial policy for the green and digital revolution," Science and Public Policy, Oxford University Press, vol. 50(5), pages 842-857.
    10. Attila Havas, 2016. "Social and Business Innovations: Are Common Measurement Approaches Possible?," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 10(2 (eng)), pages 58-80.
    11. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    12. O. Nykyforuk, 2016. "Reconstructive development of Ukraine's transport at the present stage," Economy and Forecasting, Valeriy Heyets, issue 4, pages 81-90.
    13. Stefan Apostol, 2023. "Digitalization and Platformization in Romania Based on the Digital Platform Economy Index 2020," Central European Business Review, Prague University of Economics and Business, vol. 2023(4), pages 77-103.
    14. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    15. Slavo Radosevic & Esin Yoruk, 2014. "Are there global shifts in the world science base? Analysing the catching up and falling behind of world regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1897-1924, December.
    16. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    17. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    18. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    19. Yannis Dafermos & Daniela Gabor & Jo Michell, 2023. "Institutional supercycles: an evolutionary macro-finance approach," New Political Economy, Taylor & Francis Journals, vol. 28(5), pages 693-712, September.
    20. Khraisha, Tamer, 2020. "Complex economic problems and fitness landscapes: Assessment and methodological perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 390-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:9:p:91-:d:631432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.