IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p554-d511618.html
   My bibliography  Save this article

A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best–Worst Method

Author

Listed:
  • Jiří Mazurek

    (Department of Informatics and Mathematics, School of Business Administration in Karviná, Silesian University in Opava, Univerzitní Náměstí 1934/3, 733 40 Karviná, Czech Republic)

  • Radomír Perzina

    (Department of Informatics and Mathematics, School of Business Administration in Karviná, Silesian University in Opava, Univerzitní Náměstí 1934/3, 733 40 Karviná, Czech Republic)

  • Jaroslav Ramík

    (Department of Informatics and Mathematics, School of Business Administration in Karviná, Silesian University in Opava, Univerzitní Náměstí 1934/3, 733 40 Karviná, Czech Republic)

  • David Bartl

    (Department of Informatics and Mathematics, School of Business Administration in Karviná, Silesian University in Opava, Univerzitní Náměstí 1934/3, 733 40 Karviná, Czech Republic)

Abstract

In this paper, we compare three methods for deriving a priority vector in the theoretical framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method (EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation. As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on average, significantly more sensitive statistically (and thus less robust) and more susceptible to order violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment for the different numbers of pairwise comparisons required by each method. On the other hand, differences in sensitivity and order violation between the GMM and EMM were found to be mostly statistically insignificant.

Suggested Citation

  • Jiří Mazurek & Radomír Perzina & Jaroslav Ramík & David Bartl, 2021. "A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best–Worst Method," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:554-:d:511618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, September.
    2. Murat Köksalan & Jyrki Wallenius & Stanley Zionts, 2011. "Multiple Criteria Decision Making:From Early History to the 21st Century," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Werner, 2021. "Special Issue “Mathematical Methods for Operations Research Problems”," Mathematics, MDPI, vol. 9(21), pages 1-4, October.
    2. Nikolai Krivulin & Alexey Prinkov & Igor Gladkikh, 2022. "Using Pairwise Comparisons to Determine Consumer Preferences in Hotel Selection," Mathematics, MDPI, vol. 10(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Gergel & Evgeny Kozinov, 2018. "Efficient multicriterial optimization based on intensive reuse of search information," Journal of Global Optimization, Springer, vol. 71(1), pages 73-90, May.
    2. Ping Heidi Huang & Tzuong-tsieng Moh, 2017. "A non-linear non-weight method for multi-criteria decision making," Annals of Operations Research, Springer, vol. 248(1), pages 239-251, January.
    3. Fancello, Giovanna & Tsoukiàs, Alexis, 2021. "Learning urban capabilities from behaviours. A focus on visitors values for urban planning," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    4. Bana e Costa, Carlos A. & Oliveira, Carlos S. & Vieira, Victor, 2008. "Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon," Omega, Elsevier, vol. 36(3), pages 442-450, June.
    5. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    6. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    7. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    8. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    9. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    10. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    11. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    12. José M. Merigó & Anna M. Gil-Lafuente & Daniel Palacios-Marqués, 2014. "A new method for fuzzy decision making under risk and uncertainty," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 5(1), pages 29-42.
    13. Franceschini, Fiorenzo & Maisano, Domenico, 2015. "Checking the consistency of the solution in ordinal semi-democratic decision-making problems," Omega, Elsevier, vol. 57(PB), pages 188-195.
    14. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    15. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    16. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.
    17. Boris Yatsalo & Sergey Gritsyuk & Terry Sullivan & Benjamin Trump & Igor Linkov, 2016. "Multi-criteria risk management with the use of DecernsMCDA: methods and case studies," Environment Systems and Decisions, Springer, vol. 36(3), pages 266-276, September.
    18. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    19. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    20. Tunjo Perić & Zoran Babić & Josip Matejaš, 2018. "Comparative analysis of application efficiency of two iterative multi objective linear programming methods (MP method and STEM method)," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 565-583, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:554-:d:511618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.