IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2851-d676388.html
   My bibliography  Save this article

Fault-Tolerance by Resilient State Transition for Collaborative Cyber-Physical Systems

Author

Listed:
  • Nazakat Ali

    (Department of Computer Science, Chungbuk National University, Cheongju 28644, Korea)

  • Manzoor Hussain

    (Department of Computer Science, Chungbuk National University, Cheongju 28644, Korea)

  • Jang-Eui Hong

    (Department of Computer Science, Chungbuk National University, Cheongju 28644, Korea)

Abstract

Collaborative Cyber-Physical Systems (CCPS) are systems where several individual cyber-physical systems collaborate to perform a single task. The safety of a single Cyber-Physical System (CPS) can be achieved by applying a safety mechanism and following standard processes defined in ISO 26262 and IEC 61508. However, due to heterogeneity, complexity, variability, independence, self-adaptation, and dynamic nature, functional operations for CCPS can threaten system safety. In contrast to fail-safe systems, where, for instance, the system leads to a safe state when an actuator shuts down due to a fault, the system has to be fail-operational in autonomous driving cases, i.e., a shutdown of a platooning member vehicle during operation on the road is unacceptable. Instead, the vehicle should continue its operation with degraded performance until a safe state is reached or returned to its original state in case of temporal faults. Thus, this paper proposes an approach that considers the resilient behavior of collaborative systems to achieve the fail-operational goal in autonomous platooning systems. First, we extended the state transition diagram and introduced additional elements such as failures, mitigation strategies, and safe exit to achieve resilience in autonomous platooning systems. The extended state transition diagram is called the Resilient State Transition Diagram (R-STD). Second, an autonomous platooning system’s perception, communication, and ego-motion failures are modeled using the proposed R-STD to check its effectiveness. Third, VENTOS simulator is used to verify the resulting resilient transitions of R-STD in a simulation environment. Results show that a resilient state transition approach achieves the fail-operational goal in the autonomous platooning system.

Suggested Citation

  • Nazakat Ali & Manzoor Hussain & Jang-Eui Hong, 2021. "Fault-Tolerance by Resilient State Transition for Collaborative Cyber-Physical Systems," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2851-:d:676388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia R. Binder & Susan Mühlemeier & Romano Wyss, 2017. "An Indicator-Based Approach for Analyzing the Resilience of Transitions for Energy Regions. Part I: Theoretical and Conceptual Considerations," Energies, MDPI, vol. 10(1), pages 1-18, January.
    2. Steven Knowles Flanagan & Zuoyin Tang & Jianhua He & Irfan Yusoff, 2021. "Investigating and Modeling of Cooperative Vehicle-to-Vehicle Safety Stopping Distance," Future Internet, MDPI, vol. 13(3), pages 1-24, March.
    3. Thorsten Schilling & Romano Wyss & Claudia R. Binder, 2018. "The Resilience of Sustainability Transitions," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    2. Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
    3. Pingkuo, Liu & Huan, Peng, 2022. "What drives the green and low-carbon energy transition in China?: An empirical analysis based on a novel framework," Energy, Elsevier, vol. 239(PE).
    4. Helena Andrade Figueira & Olivia Andrade Figueira & Carla Corradi-Perini & Alejandro Martínez-Rodríguez & Alan Andrade Figueira & Carlos Roberto Lyra da Silva & Estelio Henrique Martin Dantas, 2021. "A Descriptive Analytical Study on Physical Activity and Quality of Life in Sustainable Aging," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    5. Lei Xia & Qingjiang Han & Shui Yu, 2024. "Sustainable manufacturing intelligence: pathways for high-quality and energy efficient economic growth," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-30, June.
    6. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.
    7. Manuel Ayala & Diego Huaraca & José Varela-Aldás & Andrea Ordóñez & Genís Riba, 2020. "Anthropization and Growth of the Electricity Grid as Variables for the Analysis of Urban Infrastructure," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    8. Thorsten Schilling & Romano Wyss & Claudia R. Binder, 2018. "The Resilience of Sustainability Transitions," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    9. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    10. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2019. "Long-term diversification paths and energy transitions in Europe," Ecological Economics, Elsevier, vol. 163(C), pages 158-168.
    11. Shade T. Shutters & Srinivasa S. Kandala & Fangwu Wei & Ann P. Kinzig, 2021. "Resilience of Urban Economic Structures Following the Great Recession," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    12. Romano Wyss & Susan Mühlemeier & Claudia R. Binder, 2018. "An Indicator-Based Approach for Analysing the Resilience of Transitions for Energy Regions. Part II: Empirical Application to the Case of Weiz-Gleisdorf, Austria," Energies, MDPI, vol. 11(9), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2851-:d:676388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.