IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2759-d668645.html
   My bibliography  Save this article

Optimization of the Collaborative Hub Location Problem with Metaheuristics

Author

Listed:
  • Mohamed Amine Gargouri

    (Laboratory of Innovative Technologies, University of Picardie Jules Verne, 02100 Saint Quentin, France
    Laboratory Quartz, University of Paris 8, 93100 Montreuil, France)

  • Nadia Hamani

    (Laboratory of Innovative Technologies, University of Picardie Jules Verne, 02100 Saint Quentin, France)

  • Nassim Mrabti

    (Laboratory of Innovative Technologies, University of Picardie Jules Verne, 02100 Saint Quentin, France)

  • Lyes Kermad

    (Laboratory Quartz, University of Paris 8, 93100 Montreuil, France)

Abstract

By creating new job opportunities and developing the regional economy, the transport of goods generates significant costs, environmental and sanitary nuisances, and high greenhouse gas (GHG) emissions. In this context, collaboration is an interesting solution that can be used to enable companies to overcome some problems such as globalization, economic crisis, health crisis, issues related to sustainability, etc. This study deals with the design of a multiperiod multiproduct three-echelon collaborative distribution network with a heterogeneous fleet. By applying the mixed integer linear problem (MILP) formulations, it was possible to study the three dimensions of sustainability (economic, environmental, and social/societal). Since the examined problem was NP-hard, it was solved using four metaheuristic approaches to minimize the different logistics costs or CO 2 emissions. The social/societal aspect evaluated the accident rate and the noise level generated by the freight transport. Four algorithms were developed to achieve our objectives: a genetic algorithm, a simulated annealing, a particle swarm algorithm, and a vibration damping optimization algorithm. Considering a French distribution network, these algorithms overcame the limits of the exact solution method by obtaining optimal solutions with reasonable execution time.

Suggested Citation

  • Mohamed Amine Gargouri & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "Optimization of the Collaborative Hub Location Problem with Metaheuristics," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2759-:d:668645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodríguez, V. & Alvarez, M.J. & Barcos, L., 2007. "Hub location under capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 495-505, September.
    2. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    3. Kratica, Jozef & Stanimirovic, Zorica & Tosic, Dusan & Filipovic, Vladimir, 2007. "Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 15-28, October.
    4. Shenle Pan & Damien Trentesaux & Eric Ballot & George Q. Huang, 2019. "Horizontal collaborative transport: survey of solutions and practical implementation issues," Post-Print hal-02008934, HAL.
    5. Wang, Min & Cheng, Qing & Huang, Jincai & Cheng, Guangquan, 2021. "Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    6. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    7. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    8. Ivan Contreras, 2015. "Hub Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 311-344, Springer.
    9. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    10. Shenle Pan & Damien Trentesaux & Eric Ballot & George Q. Huang, 2019. "Horizontal collaborative transport: survey of solutions and practical implementation issues," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5340-5361, August.
    11. Hu, Lu & Zhu, Juan Xiu & Wang, Yuan & Lee, Loo Hay, 2018. "Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 568-588.
    12. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    2. Jun Wu & Xin Liu & Yuanyuan Li & Liping Yang & Wenyan Yuan & Yile Ba, 2022. "A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty," Mathematics, MDPI, vol. 10(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Juanjo Peiró & Ángel Corberán & Rafael Martí & Francisco Saldanha-da-Gama, 2019. "Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems," Transportation Science, INFORMS, vol. 53(4), pages 1126-1149, July.
    3. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    4. Islem Snoussi & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "A Robust Mixed-Integer Linear Programming Model for Sustainable Collaborative Distribution," Mathematics, MDPI, vol. 9(18), pages 1-27, September.
    5. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    6. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    7. Ghaffarinasab, Nader & Kara, Bahar Y. & Campbell, James F., 2022. "The stratified p-hub center and p-hub maximal covering problems," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 120-148.
    8. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    9. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    10. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Nader Azizi, 2019. "Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods," Annals of Operations Research, Springer, vol. 272(1), pages 159-185, January.
    12. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    13. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    14. Lei, Xinyue & Chen, Junlan & Zhu, Zhenjun & Guo, Xiucheng & Liu, Pei & Jiang, Xiaohong, 2022. "How to locate urban–rural transit hubs from the viewpoint of county integration?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    15. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    16. Ghaffarinasab, Nader & Atayi, Reza, 2018. "An implicit enumeration algorithm for the hub interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 267(1), pages 23-39.
    17. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    18. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    19. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities," Omega, Elsevier, vol. 74(C), pages 122-134.
    20. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2759-:d:668645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.