IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1989-d441515.html
   My bibliography  Save this article

A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension

Author

Listed:
  • Muhammad H. Tahir

    (Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

  • Muhammad Adnan Hussain

    (Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

  • Gauss M. Cordeiro

    (Department of Statistics, Federal University of Pernambuco, Recife 50740-540, PE, Brazil)

  • M. El-Morshedy

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • M. S. Eliwa

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

Abstract

For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of distributions through a new generator which could be an alternate to the Kumaraswamy-G family proposed earlier by Cordeiro and de Castro in 2011. This new generator can also be used to develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G, and Transmuted-G for bounded unit interval. Some mathematical properties of this new family are obtained and maximum likelihood method is used for the estimation of G-family parameters. We investigate the properties of one special model called the new Kumaraswamy-Weibull (NKwW) distribution. Parameters of NKwW model are estimated by using maximum likelihood method, and the performance of these estimators are assessed through simulation study. Two real life data sets are analyzed to illustrate the importance and flexibility of the proposed model. In fact, this model outperforms some generalized Weibull models such as the Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull and exponentiated-Weibull distributions when applied to these data sets. The bivariate extension of the family is also proposed, and the estimation of parameters is dealt. The usefulness of the bivariate NKwW model is illustrated empirically by means of a real-life data set.

Suggested Citation

  • Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1989-:d:441515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    3. Muhammad Shuaib Khan & Robert King & Irene Lena Hudson, 2017. "Transmuted Weibull distribution: Properties and estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(11), pages 5394-5418, June.
    4. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    5. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    6. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    7. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    8. Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
    9. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    10. M. E. Ghitany & E. K. Al-Hussaini & R. A. Al-Jarallah, 2005. "Marshall-Olkin extended weibull distribution and its application to censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(10), pages 1025-1034.
    11. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    12. A. Asgharzadeh & Hassan S. Bakouch & M. Habibi, 2017. "A generalized binomial exponential 2 distribution: modeling and applications to hydrologic events," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2368-2387, October.
    13. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    14. Marie Hušková & Matúš Maciak, 2017. "Discontinuities in robust nonparametric regression with α-mixing dependence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 447-475, April.
    15. M. H. Tahir & Gauss M. Cordeiro & Ayman Alzaatreh & M. Mansoor & M. Zubair, 2016. "The logistic-X family of distributions and its applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(24), pages 7326-7349, December.
    16. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    17. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    3. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    4. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    5. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    6. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    7. Sajid Hussain & Muhammad Sajid Rashid & Mahmood Ul Hassan & Rashid Ahmed, 2022. "The Generalized Alpha Exponent Power Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    8. Joseph Thomas Eghwerido & Pelumi E. Oguntunde & Friday Ikechukwu Agu, 2023. "The Alpha Power Marshall-Olkin-G Distribution: Properties, and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 172-197, February.
    9. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    10. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    11. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    12. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    13. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    14. Prataviera, Fábio & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R. & Verssani, Bruna A.W., 2018. "A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 13-26.
    15. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    16. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    17. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    18. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    19. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    20. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1989-:d:441515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.