IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i6p719-726.html
   My bibliography  Save this article

A flexible Weibull extension

Author

Listed:
  • Bebbington, Mark
  • Lai, Chin-Diew
  • Zitikis, RiÄ ardas

Abstract

We propose a new two-parameter ageing distribution which is a generalization of the Weibull and study its properties. It has a simple failure rate (hazard rate) function. With appropriate choice of parameter values, it is able to model various ageing classes of life distributions including IFR, IFRA and modified bathtub (MBT). The ranges of the two parameters are clearly demarcated to separate these classes. It thus provides an alternative to many existing life distributions. Details of parameter estimation are provided through a Weibull-type probability plot and maximum likelihood. We also derive explicit formulas for the turning points of the failure rate function in terms of its parameters. This, combined with the parameter estimation procedures, will allow empirical estimation of the turning points for real data sets, which provides useful information for reliability policies.

Suggested Citation

  • Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:6:p:719-726
    DOI: 10.1016/j.ress.2006.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183200600072X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Jiang & D. N. P. Murthy, 1998. "Mixture of Weibull distributions—parametric characterization of failure rate function," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(1), pages 47-65, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    2. Xiaowei Dong & Feng Sun & Fangchao Xu & Qi Zhang & Ran Zhou & Liang Zhang & Zhongwei Liang, 2022. "Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    3. M Bebbington & C D Lai & D N P Murthy & R Zitikis, 2009. "Modelling N- and W-shaped hazard rate functions without mixing distributions," Journal of Risk and Reliability, , vol. 223(1), pages 59-69, March.
    4. Farcomeni, Alessio & Nardi, Alessandra, 2010. "A two-component Weibull mixture to model early and late mortality in a Bayesian framework," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 416-428, February.
    5. Baker, Rose, 2019. "New survival distributions that quantify the gain from eliminating flawed components," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 493-501.
    6. Peng, Xiuyun & Yan, Zaizai, 2014. "Estimation and application for a new extended Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 34-42.
    7. Wendy W. Moe & Peter S. Fader, 2002. "Fast-Track: Article Using Advance Purchase Orders to Forecast New Product Sales," Marketing Science, INFORMS, vol. 21(3), pages 347-364, March.
    8. Eshetu T. Wondmagegnehu, 2004. "On the behavior and shape of mixture failure rates from a family of IFR Weibull distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 491-500, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:6:p:719-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.