Advanced Search
MyIDEAS: Login to save this article or follow this journal

A new class of bivariate distributions and its mixture


Author Info

  • Sarhan, Ammar M.
  • Balakrishnan, N.
Registered author(s):


    A new class of bivariate distributions is presented in this paper. The procedure used in this paper is based on a latent random variable with exponential distribution. The model introduced here is of Marshall-Olkin type. A mixture of the proposed bivariate distributions is also discussed. The results obtained here generalize those of the bivariate exponential distribution present in the literature.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 7 (August)
    Pages: 1508-1527

    as in new window
    Handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1508-1527

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Generalized exponential distribution Bivariate exponential distribution Moments Mixtures;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, Elsevier, vol. 100(4), pages 581-593, April.
    2. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 55(1), pages 644-654, January.
    3. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods and Applications, Springer, Springer, vol. 23(1), pages 123-148, March.
    4. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, Elsevier, vol. 123(C), pages 19-29.
    5. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, Elsevier, vol. 101(3), pages 491-499, March.
    6. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 54(8), pages 2021-2034, August.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1508-1527. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.