IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p154-d204009.html
   My bibliography  Save this article

Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path

Author

Listed:
  • Minhee Kim

    (School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76, Hanggonddaehak-ro, Deoyang-gu, Goyang-si, Gyeonggi-do 10540, Korea)

  • Junjae Chae

    (School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76, Hanggonddaehak-ro, Deoyang-gu, Goyang-si, Gyeonggi-do 10540, Korea)

Abstract

Facility layout problems (FLPs) are concerned with the non-overlapping arrangement of facilities. The objective of many FLP-based studies is to minimize the total material handling cost between facilities, which are considered as rectangular blocks of given space. However, it is important to integrate a layout design associated with continual material flow when the system uses circulating material handling equipment. The present study proposes approaches to solve the layout design and shortest single loop material handling path. Monarch butterfly optimization (MBO), a recently-announced meta-heuristic algorithm, is applied to determine the layout configuration. A loop construction method is proposed to construct a single loop material handling path for the given layout in every MBO iteration. A slicing tree structure (STS) is used to represent the layout configuration in solution form. A total of 11 instances are tested to evaluate the algorithm’s performance. The proposed approach generates solutions as intended within a reasonable amount of time.

Suggested Citation

  • Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:154-:d:204009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Camp, Drew J. & Carter, Michael W. & Vannelli, Anthony, 1992. "A nonlinear optimization approach for solving facility layout problems," European Journal of Operational Research, Elsevier, vol. 57(2), pages 174-189, March.
    2. Gordon C. Armour & Elwood S. Buffa, 1963. "A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities," Management Science, INFORMS, vol. 9(2), pages 294-309, January.
    3. Yang, Taho & Peters, Brett A. & Tu, Mingan, 2005. "Layout design for flexible manufacturing systems considering single-loop directional flow patterns," European Journal of Operational Research, Elsevier, vol. 164(2), pages 440-455, July.
    4. Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 166-178, August.
    5. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    6. Amir Ahmadi-Javid & Nasrin Ramshe, 2013. "On the block layout shortest loop design problem," IISE Transactions, Taylor & Francis Journals, vol. 45(5), pages 494-501.
    7. Gai-Ge Wang & Suash Deb & Xinchao Zhao & Zhihua Cui, 2018. "A new monarch butterfly optimization with an improved crossover operator," Operational Research, Springer, vol. 18(3), pages 731-755, October.
    8. Asef-Vaziri, Ardavan & Laporte, Gilbert, 2005. "Loop based facility planning and material handling," European Journal of Operational Research, Elsevier, vol. 164(1), pages 1-11, July.
    9. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    10. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    11. Asef-Vaziri, Ardavan & Kazemi, Morteza, 2018. "Covering and connectivity constraints in loop-based formulation of material flow network design in facility layout," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1033-1044.
    12. Asef-Vaziri, Ardavan & Jahandideh, Hossein & Modarres, Mohammad, 2017. "Loop-based facility layout design under flexible bay structures," International Journal of Production Economics, Elsevier, vol. 193(C), pages 713-725.
    13. Hanif D. Sherali & Barbara M. P. Fraticelli & Russell D. Meller, 2003. "Enhanced Model Formulations for Optimal Facility Layout," Operations Research, INFORMS, vol. 51(4), pages 629-644, August.
    14. Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39430, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Kar Yan Tam, 1992. "Genetic algorithms, function optimization, and facility layout design," European Journal of Operational Research, Elsevier, vol. 63(2), pages 322-346, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
    2. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    3. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    2. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    3. Bozer, Yavuz A. & Wang, Chi-Tai, 2012. "A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 382-391.
    4. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    5. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    6. Asef-Vaziri, Ardavan & Jahandideh, Hossein & Modarres, Mohammad, 2017. "Loop-based facility layout design under flexible bay structures," International Journal of Production Economics, Elsevier, vol. 193(C), pages 713-725.
    7. Scholz, Daniel & Jaehn, Florian & Junker, Andreas, 2010. "Extensions to STaTS for practical applications of the facility layout problem," European Journal of Operational Research, Elsevier, vol. 204(3), pages 463-472, August.
    8. Paes, Frederico Galaxe & Pessoa, Artur Alves & Vidal, Thibaut, 2017. "A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 742-756.
    9. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    10. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.
    11. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    12. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    13. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    14. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    15. Jerzy Grobelny & Rafal Michalski, 2017. "A novel version of simulated annealing based on linguistic patterns for solving facility layout problems," WORking papers in Management Science (WORMS) WORMS/17/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    16. Amir Ahmadi-Javid & Nasrin Ramshe, 2019. "Designing flexible loop-based material handling AGV paths with cell-adjacency priorities: an efficient cutting-plane algorithm," 4OR, Springer, vol. 17(4), pages 373-400, December.
    17. I. Jerin Leno & S. Saravana Sankar & S. G. Ponnambalam, 2018. "MIP model and elitist strategy hybrid GA–SA algorithm for layout design," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 369-387, February.
    18. Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 166-178, August.
    19. Liu, Jingfa & Wang, Dawen & He, Kun & Xue, Yu, 2017. "Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1052-1063.
    20. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:154-:d:204009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.