IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i1p166-178.html
   My bibliography  Save this article

STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem

Author

Listed:
  • Scholz, Daniel
  • Petrick, Anita
  • Domschke, Wolfgang

Abstract

In this paper, a slicing tree based tabu search heuristic for the rectangular, continual plane facility layout problem (FLP) is presented. In addition to the incorporation of facilities with unequal areas we also integrate the possibility to specify various requirements regarding (rectangular) shape and dimensions of each individual facility by using bounding curves. Therefore, it is possible to solve problems containing facilities of fixed and facilities of flexible shapes at the same time. We present a procedure that calculates the layout corresponding to a given slicing tree on the basis of bounding curves. These layouts are slicing structures which are able to contain empty spaces to guarantee that stringent shape restrictions of facilities are kept. Due to these features this approach is better suited for practical use than so far existing ones. The effectiveness of our approach in terms of objective function value is shown by comparing our results to those found in the literature. Even a large problem instance comprised of 62 facilities has been solved.

Suggested Citation

  • Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 166-178, August.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:166-178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00490-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon C. Armour & Elwood S. Buffa, 1963. "A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities," Management Science, INFORMS, vol. 9(2), pages 294-309, January.
    2. Hanif D. Sherali & Barbara M. P. Fraticelli & Russell D. Meller, 2003. "Enhanced Model Formulations for Optimal Facility Layout," Operations Research, INFORMS, vol. 51(4), pages 629-644, August.
    3. Kar Yan Tam, 1992. "Genetic algorithms, function optimization, and facility layout design," European Journal of Operational Research, Elsevier, vol. 63(2), pages 322-346, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Bozer, Yavuz A. & Wang, Chi-Tai, 2012. "A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 382-391.
    3. Scholz, Daniel & Jaehn, Florian & Junker, Andreas, 2010. "Extensions to STaTS for practical applications of the facility layout problem," European Journal of Operational Research, Elsevier, vol. 204(3), pages 463-472, August.
    4. Paes, Frederico Galaxe & Pessoa, Artur Alves & Vidal, Thibaut, 2017. "A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 742-756.
    5. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    6. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    7. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    8. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    9. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    10. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    11. Asef-Vaziri, Ardavan & Jahandideh, Hossein & Modarres, Mohammad, 2017. "Loop-based facility layout design under flexible bay structures," International Journal of Production Economics, Elsevier, vol. 193(C), pages 713-725.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    3. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    4. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    5. Scholz, Daniel & Jaehn, Florian & Junker, Andreas, 2010. "Extensions to STaTS for practical applications of the facility layout problem," European Journal of Operational Research, Elsevier, vol. 204(3), pages 463-472, August.
    6. Asef-Vaziri, Ardavan & Jahandideh, Hossein & Modarres, Mohammad, 2017. "Loop-based facility layout design under flexible bay structures," International Journal of Production Economics, Elsevier, vol. 193(C), pages 713-725.
    7. Bozer, Yavuz A. & Wang, Chi-Tai, 2012. "A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 382-391.
    8. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    9. Miguel F. Anjos & Anthony Vannelli, 2006. "A New Mathematical-Programming Framework for Facility-Layout Design," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 111-118, February.
    10. Jankovits, Ibolya & Luo, Chaomin & Anjos, Miguel F. & Vannelli, Anthony, 2011. "A convex optimisation framework for the unequal-areas facility layout problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 199-215, October.
    11. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    12. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    13. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.
    14. Lee, Geun-Cheol & Kim, Yeong-Dae, 2000. "Algorithms for adjusting shapes of departments in block layouts on the grid-based plane," Omega, Elsevier, vol. 28(1), pages 111-122, February.
    15. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    16. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    17. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    18. Ali, Agha Iqbal & O'Connor, Debra J., 2010. "The impact of distribution system characteristics on computational tractability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 323-333, January.
    19. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    20. Yu, Junfang & Sarker, Bhaba R., 2003. "Directional decomposition heuristic for a linear machine-cell location problem," European Journal of Operational Research, Elsevier, vol. 149(1), pages 142-184, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:166-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.