IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v164y2005i2p440-455.html
   My bibliography  Save this article

Layout design for flexible manufacturing systems considering single-loop directional flow patterns

Author

Listed:
  • Yang, Taho
  • Peters, Brett A.
  • Tu, Mingan

Abstract

No abstract is available for this item.

Suggested Citation

  • Yang, Taho & Peters, Brett A. & Tu, Mingan, 2005. "Layout design for flexible manufacturing systems considering single-loop directional flow patterns," European Journal of Operational Research, Elsevier, vol. 164(2), pages 440-455, July.
  • Handle: RePEc:eee:ejores:v:164:y:2005:i:2:p:440-455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00892-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Yavuz A. Bozer & Russell D. Meller & Steven J. Erlebacher, 1994. "An Improvement-Type Layout Algorithm for Single and Multiple-Floor Facilities," Management Science, INFORMS, vol. 40(7), pages 918-932, July.
    3. Chhajed, Dilip & Montreuil, Benoit & Lowe, Timothy J., 1992. "Flow network design for manufacturing systems layout," European Journal of Operational Research, Elsevier, vol. 57(2), pages 145-161, March.
    4. Sunderesh S. Heragu & Andrew Kusiak, 1988. "Machine Layout Problem in Flexible Manufacturing Systems," Operations Research, INFORMS, vol. 36(2), pages 258-268, April.
    5. B R Sarker & Z Li, 2001. "Job routing and operations scheduling: a network-based virtual cell formation approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 673-681, June.
    6. Heragu, Sunderesh S. & Alfa, Attahiru Sule, 1992. "Experimental analysis of simulated annealing based algorithms for the layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 190-202, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Jerin Leno & S. Saravana Sankar & S. G. Ponnambalam, 2018. "MIP model and elitist strategy hybrid GA–SA algorithm for layout design," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 369-387, February.
    2. Yiyo Kuo & Sheng-I Chen & Yen-Hung Yeh, 2020. "Single machine scheduling with sequence-dependent setup times and delayed precedence constraints," Operational Research, Springer, vol. 20(2), pages 927-942, June.
    3. Ghorashi Khalilabadi, S. M. & Roy, D. & de Koster, M.B.M., 2022. "A Data-driven Approach to Enhance Worker Productivity by Optimizing Facility Layout," ERIM Report Series Research in Management ERS-2022-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    5. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    6. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
    7. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    2. Bazargan-Lari, Massoud, 1999. "Layout designs in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 112(2), pages 258-272, January.
    3. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    4. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    5. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Lin-Kernighan Heuristic for Single Row Facility Layout," IIMA Working Papers WP2012-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    7. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    8. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    9. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
    10. Kothari, Ravi & Ghosh, Diptesh, 2012. "Tabu Search for the Single Row Facility Layout Problem in FMS using a 3-opt Neighborhood," IIMA Working Papers WP2012-02-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Kothari, Ravi & Ghosh, Diptesh, 2012. "Scatter Search Algorithms for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Amaral, Andre R.S., 2006. "On the exact solution of a facility layout problem," European Journal of Operational Research, Elsevier, vol. 173(2), pages 508-518, September.
    13. Hassan, Mohsen M. D., 2000. "Toward re-engineering models and algorithms of facility layout," Omega, Elsevier, vol. 28(6), pages 711-723, December.
    14. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    15. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Ramazan Şahin & Sadegh Niroomand & Esra Duygu Durmaz & Saber Molla-Alizadeh-Zavardehi, 2020. "Mathematical formulation and hybrid meta-heuristic solution approaches for dynamic single row facility layout problem," Annals of Operations Research, Springer, vol. 295(1), pages 313-336, December.
    17. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    18. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    19. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
    20. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:164:y:2005:i:2:p:440-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.