IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v4y2015i3p737-753d54509.html
   My bibliography  Save this article

Ecological Recycling Agriculture to Enhance Agro-Ecosystem Services in the Baltic Sea Region: Guidelines for Implementation

Author

Listed:
  • Karin Stein-Bachinger

    (Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany)

  • Moritz Reckling

    (Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany)

  • Johann Bachinger

    (Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany)

  • Johannes Hufnagel

    (Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany)

  • Wijnand Koker

    (Biodynamic Research Institute, 15391 Järna, Sweden)

  • Artur Granstedt

    (Biodynamic Research Institute, 15391 Järna, Sweden)

Abstract

Eutrophication caused by agriculture is an increasing ecological threat to the Baltic Sea. Modern, resource-efficient farming systems based on integrated plant and animal production, effective nutrient recycling and low external inputs can enhance multiple agro-ecosystem services, resulting in reduced pollution. Practical examples of such farming systems are not widespread. Therefore, the Baltic Ecological Recycling Agriculture and Society (BERAS) Implementation project aimed to foster this systemic shift. In this paper, agronomic strategies are described to improve nitrogen (N) efficiency for the conversion to ecological recycling agriculture (ERA). First, N farm gate balances of 22 farms in conversion are presented. They showed a large variation from −9 to 90 kg∙N∙ha −1 ∙a −1 . Then, the use of guidelines and advisory tools to improve the nitrogen efficiency is described. The legume estimation trainer and nitrogen budget calculator help assess and optimize the nitrogen supply from legumes under farming conditions. The application of the crop rotation planning tool “ROTOR” guides advisors and farmers to identify agronomically and environmentally sound rotations. The tools can help overcome key agronomic constraints by implementing ERA. The necessity of accompanying measures from policy and the need to change food consumption patterns are discussed.

Suggested Citation

  • Karin Stein-Bachinger & Moritz Reckling & Johann Bachinger & Johannes Hufnagel & Wijnand Koker & Artur Granstedt, 2015. "Ecological Recycling Agriculture to Enhance Agro-Ecosystem Services in the Baltic Sea Region: Guidelines for Implementation," Land, MDPI, vol. 4(3), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:4:y:2015:i:3:p:737-753:d:54509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/4/3/737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/4/3/737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Larsson & Louise Morin & Thomas Hahn & Johanna Sandahl, 2013. "Institutional barriers to organic farming in Central and Eastern European countries of the Baltic Sea region," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 1(1), pages 1-20, December.
    2. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    3. Hülsberger, Kurt-Jürgen (Ed.) & Rahmann, Gerold (Ed.), 2013. "Klimawirkungen und Nachhaltigkeit ökologischer und konventioneller Betriebssysteme: Untersuchungen in einem Netzwerk von Pilotbetrieben," Thünen Reports 8, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    4. Larsson, Markus & Granstedt, Artur, 2010. "Sustainable governance of the agriculture and the Baltic Sea -- Agricultural reforms, food production and curbed eutrophication," Ecological Economics, Elsevier, vol. 69(10), pages 1943-1951, August.
    5. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    6. Markus Larsson & Louise Morin & Thomas Hahn & Johanna Sandahl, 2013. "Institutional barriers to organic farming in Central and Eastern European countries of the Baltic Sea region," Demography, Springer;Population Association of America (PAA), vol. 1(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Burkhard & Stefan Hotes & Hubert Wiggering, 2016. "Agro(Eco)System Services—Supply and Demand from Fields to Society," Land, MDPI, vol. 5(2), pages 1-4, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    2. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    3. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    4. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    5. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    6. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    7. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    8. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    9. Andy Felix Jităreanu & Mioara Mihăilă & Alexandru-Dragoș Robu & Florin-Daniel Lipșa & Carmen Luiza Costuleanu, 2022. "Dynamic of Ecological Agriculture Certification in Romania Facing the EU Organic Action Plan," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    10. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    11. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    12. Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    13. Tina L. Saitone & Richard J. Sexton, 2017. "Agri-food supply chain: evolution and performance with conflicting consumer and societal demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 634-657.
    14. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    15. Guy Meunier, 2020. "Land-sparing vs land-sharing with incomplete policies [Rethinking the causes of deforestation: lessons from economic models]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 438-466.
    16. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    17. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    18. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    19. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).
    20. Luciano Orden & Nicolás Ferreiro & Patricia Satti & Luis Manuel Navas-Gracia & Leticia Chico-Santamarta & Roberto A. Rodríguez, 2021. "Effects of Onion Residue, Bovine Manure Compost and Compost Tea on Soils and on the Agroecological Production of Onions," Agriculture, MDPI, vol. 11(10), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:4:y:2015:i:3:p:737-753:d:54509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.