IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1436-d902614.html
   My bibliography  Save this article

Fire Dynamics of the Bolivian Amazon

Author

Listed:
  • Minerva Singh

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

  • Shivam Sood

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

  • C. Matilda Collins

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

Abstract

This study identifies the spatial and temporal trends, as well as the drivers, of fire dynamics in the Bolivian Amazon basin. Bolivia ranks in the top ten countries in terms of total annual burnt, with fires affecting an estimated 2.3 million hectares of forest in 2020. However, in comparison to the Brazilian Amazon, there has been little research into the fire regime in Bolivia. The sparse research and the limited literature on the subject indicate that fire activity is higher in the Bolivian Amazon basin’s dry forests and flooded savanna zones, and that agriculture and drought are the primary causes of fire activity. In this study, trend analysis and emerging hotspot analysis are deployed to identify the spatial and temporal patterns of fire activity and boosted regression tree models to identify the drivers of forest fire within each ecoregion of the Bolivian Amazon basin. Comparable to most of the Brazilian literature, this study finds that fire activity and fire season length is higher in the flooded Beni Savanna, and Chiquitano seasonally dry tropical forests than in the Bolivian Amazon ecoregion. This study also identifies moisture stress and human activity as the main drivers of fire dynamics within the region. It is intended that this research will offer a foundation for future research and conservation activities aimed at better understanding the fire regime of the Bolivian Amazon basin.

Suggested Citation

  • Minerva Singh & Shivam Sood & C. Matilda Collins, 2022. "Fire Dynamics of the Bolivian Amazon," Land, MDPI, vol. 11(9), pages 1-23, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1436-:d:902614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Müller, Robert & Müller, Daniel & Schierhorn, Florian & Gerold, Gerhard & Pacheco, Pablo, 2012. "Proximate causes of deforestation in the Bolivian lowlands: an analysis of spatial dynamics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(3), pages 445-459.
    2. Arthur Getis & J. Keith Ord, 2010. "The Analysis of Spatial Association by Use of Distance Statistics," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 127-145, Springer.
    3. Marcus V. F. Silveira & Caio A. Petri & Igor S. Broggio & Gabriel O. Chagas & Mateus S. Macul & Cândida C. S. S. Leite & Edson M. M. Ferrari & Carolina G. V. Amim & Ana L. R. Freitas & Alline Z. V. Mo, 2020. "Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis," Land, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Zhang & Ying Mao, 2021. "Spatial Effects of Environmental Pollution on Healthcare Services: Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    2. David López-Carr, 2021. "A Review of Small Farmer Land Use and Deforestation in Tropical Forest Frontiers: Implications for Conservation and Sustainable Livelihoods," Land, MDPI, vol. 10(11), pages 1-23, October.
    3. Mehmet Ronael & Tüzin Baycan, 2022. "Place-based factors affecting COVID-19 incidences in Turkey," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 1053-1086, October.
    4. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Cláudia M. Viana & Dulce Freire & Patrícia Abrantes & Jorge Rocha, 2021. "Evolution of Agricultural Production in Portugal during 1850–2018: A Geographical and Historical Perspective," Land, MDPI, vol. 10(8), pages 1-18, July.
    6. Felipe Santos‐Marquez & Carlos Mendez, 2021. "Regional convergence, spatial scale, and spatial dependence: Evidence from homicides and personal injuries in Colombia 2010–2018," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(4), pages 1162-1184, August.
    7. Jianwei Qi & Yayan Lu & Fang Han & Xuankai Ma & Zhaoping Yang, 2022. "Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    8. Cuixia Yan & Lucang Wang & Qing Zhang, 2021. "Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    9. María-Jesús Perles & Juan F. Sortino & Matías F. Mérida, 2021. "The Neighborhood Contagion Focus as a Spatial Unit for Diagnosis and Epidemiological Action against COVID-19 Contagion in Urban Spaces: A Methodological Proposal for Its Detection and Delimitation," IJERPH, MDPI, vol. 18(6), pages 1-24, March.
    10. Mastrangelo, Matias Enrique & Sun, Zhanli & Seghezzo, Lucas & Müller, Daniel, 2019. "Survey-based modeling of land-use intensity in agricultural frontiers of the Argentine dry Chaco," Land Use Policy, Elsevier, vol. 88(C).
    11. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    12. Huxiao Zhu & Xiangjun Ou & Zhen Yang & Yiwen Yang & Hongxin Ren & Le Tang, 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(8), pages 1-21, August.
    13. Eric de Souza Nascimento & Sonaira Souza da Silva & Leandra Bordignon & Antonio Willian Flores de Melo & Amintas Brandão & Carlos M. Souza & Celso H. L. Silva Junior, 2021. "Roads in the Southwestern Amazon, State of Acre, between 2007 and 2019," Land, MDPI, vol. 10(2), pages 1-12, January.
    14. Jifei Zhang & Shuai Zhang, 2022. "Assessing Integrated Effectiveness of Rural Socio-Economic Development and Environmental Protection of Wenchuan County in Southwestern China: An Approach Using Game Theory and VIKOR," Land, MDPI, vol. 11(11), pages 1-17, October.
    15. Hamidreza Rabiei-Dastjerdi & Gavin McArdle, 2021. "Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin," Land, MDPI, vol. 10(6), pages 1-16, May.
    16. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    17. Michael Manton & Evaldas Makrickas & Piotr Banaszuk & Aleksander Kołos & Andrzej Kamocki & Mateusz Grygoruk & Marta Stachowicz & Leonas Jarašius & Nerijus Zableckis & Jūratė Sendžikaitė & Jan Peters &, 2021. "Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study," Land, MDPI, vol. 10(2), pages 1-27, February.
    18. Xiaofang Chen & Wenlei Xia & Yuan Huang & Mingze Li & Wei Wan, 2021. "Evolution of the Spatial Pattern of the Assets and Environmental Liabilities Conversion Rate and Its Influencing Factors," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    19. Kahsar, Rudy, 2021. "The soft path revisited: Policies that drive decentralization of electric power generation in the contiguous U.S," Energy Policy, Elsevier, vol. 156(C).
    20. Domínguez, Alvaro & Santos-Marquez, Felipe & Mendez, Carlos, 2021. "Sectoral productivity convergence, input-output structure and network communities in Japan," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 582-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1436-:d:902614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.