IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p226-d1012991.html
   My bibliography  Save this article

Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China

Author

Listed:
  • Lingyan Huang

    (Business College, Zhejiang University City College, Hangzhou 310015, China)

  • Shanshan Xiang

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Jianzhuang Zheng

    (Business College, Zhejiang University City College, Hangzhou 310015, China)

Abstract

China has experienced rapid industrial land growth over last three decades, which has brought about diverse social and environmental issues. Hence, it is extremely significant to monitor industrial land and intra-structure dynamics for industrial land management and industry transformation, but it is still a challenging task to effectively distinguish the internal structure of industrial land at a fine scale. In this study, we proposed a new framework for sensing the industrial land and intra-structure across the urban agglomeration around Hangzhou Bay (UAHB) during 2010–2015 through data on points of interest (POIs) and Google Earth (GE) images. The industrial intra-structure was identified via an analysis of industrial POI text information by employing natural language processing and four different machine learning algorithms, and the industrial parcels were photo-interpreted based on Google Earth. Moreover, the spatial pattern of the industrial land and intra-structure was characterized using kernel density estimation. The classification results showed that among the four models, the support vector machine (SVM) achieved the best predictive ability with an overall accuracy of 84.5%. It was found that the UAHB contains a huge amount of industrial land: the total area of industrial land rose from 112,766.9 ha in 2010 to 132,124.2 ha in 2015. Scores of industrial clusters have occurred in the urban-rural fringes and the coastal zone. The intra-structure was mostly traditional labor-intensive industry, and each city had formed own industrial characteristics. New industries such as the electronic information industry are highly encouraged to build in the core city of Hangzhou and the subcore city of Ningbo. Furthermore, the industrial renewal projects were also found particularly in the core area of each city in the UAHB. The integration of POIs and GE images enabled us to map industrial land use at high spatial resolution on a large scale. Our findings can provide a detailed industrial spatial layout and enable us to better understand the process of urban industrial dynamics, thus highlighting the implications for sustainable industrial land management and policy making at the urban-agglomeration level.

Suggested Citation

  • Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:226-:d:1012991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    2. Qing Zheng & Ke Wang & Lingyan Huang & Qiming Zheng & Ghali Abdullahi Abubakar, 2017. "Monitoring the Different Types of Urban Construction Land Expansion (UCLE) in China’s Port City: A Case Study of Ningbo’s Central City," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    3. Lai, Yani & Tang, Bosin & Chen, Xiangsheng & Zheng, Xian, 2021. "Spatial determinants of land redevelopment in the urban renewal processes in Shenzhen, China," Land Use Policy, Elsevier, vol. 103(C).
    4. Gao, Jinlong & Chen, Wen & Yuan, Feng, 2017. "Spatial restructuring and the logic of industrial land redevelopment in urban China: I. Theoretical considerations," Land Use Policy, Elsevier, vol. 68(C), pages 604-613.
    5. Naveed Ahmad & Yuming Zhu & Muhammad Ibrahim & Muhammad Waqas & Abdul Waheed, 2018. "Development of a Standard Brownfield Definition, Guidelines, and Evaluation Index System for Brownfield Redevelopment in Developing Countries: The Case of Pakistan," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Kexin & Deng, Yu & Wang, Wenxue & Liu, Shenghe, 2023. "The spatial heterogeneity and dynamics of land redevelopment: Evidence from 287 Chinese cities," Land Use Policy, Elsevier, vol. 132(C).
    2. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    3. Fang He & Wendong Wu & Taozhi Zhuang & Yuan Yi, 2019. "Exploring the Diverse Expectations of Stakeholders in Industrial Land Redevelopment Projects in China: The Case of Shanghai," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    4. Le, Minh Khue & Zhu, Jieming & Nguyen, Hoang Linh, 2022. "Land redevelopment under ambiguous property rights in transitional Vietnam: A case of spatial transformation in Hanoi city center," Land Use Policy, Elsevier, vol. 120(C).
    5. Yuting, Yang & Guanghui, Jiang & Qiuyue, Zheng & Dingyang, Zhou & Yuling, Li, 2019. "Does the land use structure change conform to the evolution law of industrial structure? An empirical study of Anhui Province, China," Land Use Policy, Elsevier, vol. 81(C), pages 657-667.
    6. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    7. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    8. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    9. Lea Rebernik & Barbara Vojvodíková & Barbara Lampič, 2023. "Brownfield Data and Database Management—The Key to Address Land Recycling," Land, MDPI, vol. 12(1), pages 1-20, January.
    10. Lin Jiang & Yani Lai & Ke Chen & Xiao Tang, 2022. "What Drives Urban Village Redevelopment in China? A Survey of Literature Based on Web of Science Core Collection Database," Land, MDPI, vol. 11(4), pages 1-16, April.
    11. Tang, Peng & Shi, Xiaoping & Gao, Jinlong & Feng, Shuyi & Qu, Futian, 2019. "Demystifying the key for intoxicating land finance in China: An empirical study through the lens of government expenditure," Land Use Policy, Elsevier, vol. 85(C), pages 302-309.
    12. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    13. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    14. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    15. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    16. Lingfan Yang & Xiaolong Luo & Ziyao Ding & Xiaoman Liu & Zongni Gu, 2022. "Restructuring for Growth in Development Zones, China: A Systematic Literature and Policy Review (1984–2022)," Land, MDPI, vol. 11(7), pages 1-32, June.
    17. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    18. Yirui Han & Qinqin Pan & Yuee Cao & Jianhong Zhang & Jiaxuan Yuan & Borui Li & Saiqiang Li & Renfeng Ma & Xu Luo & Longbin Sha & Xiaodong Yang, 2022. "Estimation of Grain Crop Yields after Returning the Illegal Nurseries and Orchards to Cultivated Land in the Yangtze River Delta Region," Land, MDPI, vol. 11(11), pages 1-19, November.
    19. Lingyan Huang & Yani Wu & Qing Zheng & Qiming Zheng & Xinyu Zheng & Muye Gan & Ke Wang & AmirReza Shahtahmassebi & Jingsong Deng & Jihua Wang & Jing Zhang, 2018. "Quantifying the Spatiotemporal Dynamics of Industrial Land Uses through Mining Free Access Social Datasets in the Mega Hangzhou Bay Region, China," Sustainability, MDPI, vol. 10(10), pages 1-24, September.
    20. Xupeng Zhang & Danling Chen & Xinhai Lu & Yifeng Tang & Bin Jiang, 2021. "Interaction between Land Financing Strategy and the Implementation Deviation of Local Governments’ Cultivated Land Protection Policy in China," Land, MDPI, vol. 10(8), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:226-:d:1012991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.