IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i8p4534-d790191.html
   My bibliography  Save this article

Level of Service Model of the Non-Motorized Vehicle Crossing the Signalized Intersection Based on Riders’ Perception Data

Author

Listed:
  • Xiaofei Ye

    (Ningbo Port Trade Cooperation and Development Collaborative Innovation Center, Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Yi Zhu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Tao Wang

    (School of Architecture and Transportation, Guilin University of Electronic Technology, Guilin 541004, China)

  • Xingchen Yan

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jun Chen

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Bin Ran

    (Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA)

Abstract

This article aims to analyze the factors affecting the LOS (level of service) of non-motorized vehicles crossing the signalized intersection and to construct an appropriate method to evaluate the LOS. Aiming at the mixed non-motorized traffic flow of electric vehicles and bicycles in the Chinese metropolis, the delay model in the highway capacity manual (HCM) was modified by taking two new factors into account: the pedestrian traffic rule compliance rate and the fuzzy perception of arrival rate in reality. The results show that the data obtained by the modified model are more consistent with the actual one. Next, a comparison was established between the linear regression method and cumulative logistic regression to determine the variables that affect the LOS, and finally, a LOS evaluation index system based on threshold schemes was defined. The recommended LOS model can provide corresponding references for traffic engineers who seek to improve the level of service in urban intersections.

Suggested Citation

  • Xiaofei Ye & Yi Zhu & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Level of Service Model of the Non-Motorized Vehicle Crossing the Signalized Intersection Based on Riders’ Perception Data," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4534-:d:790191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/8/4534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/8/4534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qingfeng & Wang, Zhaoan & Yang, Jianguo & Wang, Jinmei, 2005. "Pedestrian delay estimation at signalized intersections in developing cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 61-73, January.
    2. Xingchen Yan & Tao Wang & Xiaofei Ye & Jun Chen & Zhen Yang & Hua Bai, 2018. "Recommended Widths for Separated Bicycle Lanes Considering Abreast Riding and Overtaking," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    3. Xingchen Yan & Tao Wang & Jun Chen & Xiaofei Ye & Zhen Yang & Hua Bai, 2019. "Analysis of the Characteristics and Number of Bicycle–Passenger Conflicts at Bus Stops for Improving Safety," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    4. Yang, Jianguo & Li, Qingfeng & Wang, Zhaoan & Wang, Jinmei, 2005. "Estimating pedestrian delays at signalized intersections in developing cities by Monte Carlo method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(4), pages 329-337.
    5. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    6. Griswold, Julia B. & Yu, Mengqiao & Filingeri, Victoria & Grembek, Offer & Walker, Joan L., 2018. "A behavioral modeling approach to bicycle level of service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 166-177.
    7. Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lining Liu & Xiaofei Ye & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Key Factors Analysis of Severity of Automobile to Two-Wheeler Traffic Accidents Based on Bayesian Network," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    2. Hiroki Onishi & Makoto Fujiu & Yuma Morisaki & Junichi Takayama, 2022. "Analysis of the Relationship between Age and Violation of Traffic Laws and Ordinances in Traffic Accidents on Children," Sustainability, MDPI, vol. 14(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    2. Yongqiang Zhang & Zhuang Hu & Min Zhang & Wenting Ba & Ying Wang, 2022. "Emergency Response Resource Allocation in Sparse Network Using Improved Particle Swarm Optimization," IJERPH, MDPI, vol. 19(16), pages 1-11, August.
    3. Tao Wang & Sihong Xie & Xiaofei Ye & Xingchen Yan & Jun Chen & Wenyong Li, 2020. "Analyzing E-Bikers’ Risky Riding Behaviors, Safety Attitudes, Risk Perception, and Riding Confidence with the Structural Equation Model," IJERPH, MDPI, vol. 17(13), pages 1-18, July.
    4. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    5. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    6. Dan Zhou & Mengying Chang & Guobin Gu & Xin Sun & Huizhi Xu & Wenhan Wang & Tao Wang, 2022. "Analysis of Risky Driving Behavior of Urban Electric Bicycle Drivers for Improving Safety," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    7. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    9. Yining Lu & Tao Wang & Zhuangzhuang Wang & Chaoyang Li & Yi Zhang, 2022. "Modeling the Dynamic Exclusive Pedestrian Phase Based on Transportation Equity and Cost Analysis," IJERPH, MDPI, vol. 19(13), pages 1-20, July.
    10. Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
    11. Li, Hongwei & Zhong, Xin & Zhang, Wenbo & Li, Sulan & Xing, Yingying, 2020. "An algorithm for e-bike equivalents at signalized intersections based on traffic conflict events number," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 78-95.
    12. Tang, Liying & Liu, Yugang & Li, JiaLi & Qi, Ruiting & Zheng, Shuai & Chen, Bin & Yang, Hongtai, 2020. "Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 187-206.
    13. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    14. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    15. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    16. Jibiao Zhou & Tao Zheng & Sheng Dong & Xinhua Mao & Changxi Ma, 2022. "Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China," IJERPH, MDPI, vol. 19(5), pages 1-21, February.
    17. Jiaying Qin & Sasa Ma & Lei Zhang & Qianling Wang & Guoce Feng, 2022. "Modeling and Simulation for Non-Motorized Vehicle Flow on Road Based on Modified Social Force Model," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    18. Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
    19. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
    20. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4534-:d:790191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.